The SuperCam instrument suite provides the Mars 2020 rover, Perseverance, with a number of versatile remote-sensing techniques that can be used at long distance as well as within the robotic-arm workspace. These include laser-induced breakdown spectroscopy (LIBS), remote time-resolved Raman and luminescence spectroscopies, and visible and infrared (VISIR; separately referred to as VIS and IR) reflectance spectroscopy. A remote micro-imager (RMI) provides high-resolution color context imaging, and a microphone can be used as a stand-alone tool for environmental studies or to determine physical properties of rocks and soils from shock waves of laser-produced plasmas.
View Article and Find Full Text PDFWe report on a numerical optimization of the laser induced damage threshold of multi-dielectric high reflection mirrors in the sub-picosecond regime. We highlight the interplay between the electric field distribution, refractive index and intrinsic laser induced damage threshold of the materials on the overall laser induced damage threshold (LIDT) of the multilayer. We describe an optimization method of the multilayer that minimizes the field enhancement in high refractive index materials while preserving a near perfect reflectivity.
View Article and Find Full Text PDFA correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.
View Article and Find Full Text PDFFused silica optics often exhibit surface scratches after polishing that radically reduce their damage resistance at the wavelength of 351 nm in the nanosecond regime. Consequently, chemical treatments after polishing are often used to increase the damage threshold and ensure a safe operation of these optics in large fusion-scale laser facilities. Here, we investigate the reasons for such an improvement.
View Article and Find Full Text PDFWe investigate the interest of deep wet etching with HF/HNO or KOH solutions as a final step after polishing to improve fused silica optics laser damage resistance at the wavelength of 351 nm. This comparison is carried out on scratches engineered on high damage threshold polished fused silica optics. We evidence that both KOH and HF/HNO solutions are efficient to passivate scratches and thus improve their damage threshold up to the level of the polished surface.
View Article and Find Full Text PDFIn most archaeological researches, ceramic cathodoluminescence images are conventionally exploited in a descriptive way (paste colour, inclusions). In this study, a new approach was employed: image's RGB histograms were used in order to differentiate several ceramics recently discovered at the archaeological site of San José de Moro located in northern Peru. Cathodoluminescence coupled with chemometric methods appears as a good method to characterize and particularly to produce a systematic classification of complex materials such as archaeological ceramics.
View Article and Find Full Text PDFCave walls are affected by different kinds of alterations involving preservative issues in the case of ornate caves, in particular regarding the rock art covering the walls. In this context, coralloids correspond to a facies with popcorn-like aspect belonging to the speleothem family, mostly composed of calcium carbonate. The elemental characterization indicates the presence of elements that might be linked to the diagenesis and the expansion of the alterations as demonstrated by prior analyses on stalagmites.
View Article and Find Full Text PDFIn this study, multi-block analysis was applied for the first time to LIBS spectra provided by a portable LIBS system (IVEA Solution, France) equipped with three compact Czerny-Turner spectrometers covering the spectral ranges 200-397nm, 398-571nm and 572-1000nm. 41 geological samples taken from a laboratory-cave situated in the "Vézère valley", an area rich with prehistoric sites and decorated caves listed as a UNESCO world heritage in the south west of France, were analyzed. They were composed of limestone and clay considered as underlying supports and of two types of alterations referred as moonmilk and coralloid.
View Article and Find Full Text PDFAbsorption spectra of explosives such as hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), pentaerythritol tetranitrate (PETN), and mixtures of both were measured by terahertz time domain spectroscopy (THz-TDS). Chemometrics was applied to quantitative analysis of terahertz absorbance spectra obtained in transmission mode to predict the relative amounts of RDX and PETN in samples containing pure components or their mixtures. This analysis was challenging because significant spectral overlap prevented identification of each product fingerprint.
View Article and Find Full Text PDFQuantitative measurements of the angular distribution of the plasma line emission from a gallium arsenide (GaAs) target irradiated by a single laser-air filament are reported. These enable reliable estimates of the stand-off ranges possible with single-filament-induced laser-induced breakdown spectroscopy materials detection.
View Article and Find Full Text PDFChemometrics was applied to qualitative and quantitative analyses of terahertz spectra obtained in transmission mode. A series of mixtures of three pure analytes, namely, citric acid, D-(-)fructose, and α-lactose monohydrate under various concentrations, was prepared as pressed pellets with polyethylene as binder. Then, terahertz absorbance spectra were recorded by terahertz time domain spectroscopy and analyzed.
View Article and Find Full Text PDFTime-saving, low-cost analyses of soil contamination are required to ensure fast and efficient pollution removal and remedial operations. In this work, laser-induced breakdown spectroscopy (LIBS) has been successfully applied to in situ analyses of polluted soils, providing direct semi-quantitative information about the extent of pollution. A field campaign has been carried out in Brittany (France) on a site presenting high levels of heavy metal concentrations.
View Article and Find Full Text PDFThree-dimensional (3D) femtosecond laser direct structuring in transparent materials is widely used for photonic applications. However, the structure size is limited by the optical diffraction. Here we report on a direct laser writing technique that produces subwavelength nanostructures independently of the experimental limiting factors.
View Article and Find Full Text PDFWe demonstrate the possibility of three-dimensional optical data storage inside a specific zinc phosphate glass containing silver by using third-harmonic generation (THG) imaging. Information is stored inside the glass with femtosecond laser irradiation below the refractive index modification threshold. We use the same laser for THG readout.
View Article and Find Full Text PDFThe emission properties of nanocrystalline ZnO particles prepared following an organometallic synthetic method are investigated. Spherical particles and nanorods are studied. The shape of the particles and the ligands used are shown to influence the luminescence properties in the visible domain.
View Article and Find Full Text PDF