Publications by authors named "Brunetta Guaragni"

Objective: SCN2A encodes the voltage-gated sodium (Na+) channel α subunit Na1.2, which is important for the generation and forward and back propagation of action potentials in neurons. Genetic variants in SCN2A are associated with a spectrum of neurodevelopmental disorders.

View Article and Find Full Text PDF

Cryoprecipitate is a transfusion blood product derived from fresh-frozen plasma (FFP), comprised mainly of the insoluble precipitate that gravitates to the bottom of the container when plasma is thawed and refrozen. It is highly enriched in coagulation factors I (fibrinogen), VIII, and XIII; von Willebrand factor (vWF); and fibronectin. In this article, we have reviewed currently available information on the preparation, properties, and clinical importance of cryoprecipitate in treating critically ill neonates.

View Article and Find Full Text PDF

The use of FFP in neonatology should be primarily for neonates with active bleeding and associated coagulopathy. However, since there is limited and poor-quality evidence supporting neonatal FFP transfusion, considerable FFP usage continues to be outside of this recommendation, as documented by neonatal transfusion audits. This review updates the scientific evidence available on FFP use in neonatology and reports the best evidence-practice for the safety of neonates receiving FFP.

View Article and Find Full Text PDF

Nearly 10% of premature and critically ill infants receive fresh-frozen plasma (FFP) transfusions to reduce their high risk of bleeding. The authors have only limited data to identify relevant clinical predictors of bleeding and to evaluate the efficacy of FFP administration. There is still no consensus on the optimal use of FFP in infants who have abnormal coagulation parameters but are not having active bleeding.

View Article and Find Full Text PDF

Background: Bleeding due to acquired coagulation disorders is a common complication in premature neonates. In this clinical setting, standard coagulation laboratory tests might be unsuitable to investigate the hemostatic function as they reflect the concentration of pro-coagulant proteins but not of anti-coagulant proteins. Thromboelastography (TEG), providing a more complete assessment of hemostasis, may be able to overcome some of these limitations.

View Article and Find Full Text PDF