Publications by authors named "Brunella Morandi"

Fruit growth is a complex mechanism resulting from biochemical and biophysical events leading water and dry matter to accumulate in the fruit tissues. Understanding how fruits choose their growth strategies can help growers optimizing their resource management for a more sustainable production and a higher fruit quality. This paper compares the growth strategies adopted by different fruit crops, at different times during the season and relates their fruit surface conductance to key physiological parameters for fruit growth such as phloem and xylem inflows as well transpiration losses.

View Article and Find Full Text PDF

Unlabelled: Image/video processing for fruit detection in the tree using hard-coded feature extraction algorithms has shown high accuracy on fruit detection during recent years. While accurate, these approaches even with high-end hardware are still computationally intensive and too slow for real-time systems. This paper details the use of deep convolution neural networks architecture based on single-stage detectors.

View Article and Find Full Text PDF

Biophysical fruit growth depends on a balance among the vascular and transpiration flows entering/exiting the fruit via phloem, xylem and through the epidermis. There is no information on vascular flows of Japanese plums, a species characterized by high-sugar content of its fruit at harvest. Vascular flows of Angeleno plums were monitored by fruit gauges during late fruit development, under the dry environment of the Goulburn Valley, Victoria, Australia.

View Article and Find Full Text PDF

Rootstock vigor is well known to affect yield and productive performance in many fruit crops and the dwarfing trait is often the preferred choice for modern orchard systems thanks to its improved productivity and reduced canopy volume. This work investigates the different physiological responses induced by rootstock vigor on cherry, by comparing shoot and fruit growth, water relations, leaf gas exchanges as well as fruit vascular and transpiration in/outflows of "Black Star" trees grafted on semi-vigorous (CAB6 P) and on semi-dwarfing (Gisela™6) rootstocks. The daily patterns of stem (Ψ), leaf (Ψ) and fruit (Ψ) water potential, leaf photosynthesis, stomatal conductance and transpiration, shoot and fruit growth, fruit phloem, xylem and transpiration flows were assessed both in pre- and post-veraison, while productivity and fruit quality were determined at harvest.

View Article and Find Full Text PDF

Leaf photosynthetic performance of a new red-skinned inter-specific hybrid pear variety called 'PremP009' (PIQA®BOO®) is presently unknown and therefore was compared to the Asian pear variety 'Hosui'. The seasonal growth patterns and the final dry matter accumulation of all tree components were also investigated for both genotypes in their first year of growth after grafting. Leaf gas exchange and tree growth comparisons were assessed using an innovative grafted plant system, which involved a bi-axis tree with the presence of combinations of identical or mixed (one of each genotype) 'PremP009' and 'Hosui' scion genotypes grafted onto a single clonal rootstock ('Buerre Hardy' BA29).

View Article and Find Full Text PDF

The detection of leaf functionality is of pivotal importance for plant scientists from both theoretical and practical point of view. Leaves are the sources of dry matter and food, and they sequester CO2 as well. Under the perspective of climate change and primary resource scarcity (i.

View Article and Find Full Text PDF

Drought stress negatively affects many physiological parameters and determines lower yields and fruit size. This paper investigates on the effects of prolonged water restriction on leaf gas exchanges, water relations and fruit growth on a 24-h time-scale in order to understand how different physiological processes interact to each other to face increasing drought stress and affect pear productive performances during the season. The diurnal patterns of tree water relations, leaf gas exchanges, fruit growth, fruit vascular and transpiration flows were monitored at about 50, 95 and 145 days after full bloom (DAFB) on pear trees of the cv.

View Article and Find Full Text PDF

The effect of fruit transpiration on the mechanisms driving peach (Prunus persica (L.) Batsch) daily growth was investigated. In peach, fruit water losses increase during the season and might play a key role in determining fruit growth.

View Article and Find Full Text PDF

Background And Aims: The kiwifruit berry is characterized by an early stage of rapid growth, followed by a relatively long stage of slow increase in size. Vascular and transpiration flows are the main processes through which water and carbon enter/exit the fruit, determining the daily and seasonal changes in fruit size. This work investigates the biophysical mechanisms underpinning the change in fruit growth rate during the season.

View Article and Find Full Text PDF

Along with sucrose, sorbitol represents the main photosynthetic product and form of translocated carbon in peach. This study aimed at determining whether peach fruit carbohydrate metabolism is affected by changes in source-sink balance, and specifically whether sorbitol or sucrose availability regulates fruit enzyme activities and growth. In various trials, different levels of assimilate availability to growing fruits were induced in vivo by varying crop load of entire trees, leaf : fruit ratio (L:F) of fruiting shoots, or by interrupting the phloem stream (girdling) to individual fruits.

View Article and Find Full Text PDF

The relative contributions of xylem, phloem, and transpiration to fruit growth and the daily patterns of their flows have been determined in peach, during the two stages of rapid diameter increase, by precise and continuous monitoring of fruit diameter variations. Xylem, phloem, and transpiration contributions to growth were quantified by comparing the diurnal patterns of diameter change of fruits, which were then girdled and subsequently detached. Xylem supports peach growth by 70%, and phloem 30%, while transpiration accounts for approximately 60% of daily total inflows.

View Article and Find Full Text PDF