A large body of evidence indicates that environmental agents can induce alterations in DNA methylation (DNAm) profiles. Radiofrequency electromagnetic fields (RF-EMFs) are radiations emitted by everyday devices, which have been classified as "possibly carcinogenic"; however, their biological effects are unclear. As aberrant DNAm of genomic repetitive elements (REs) may promote genomic instability, here, we sought to determine whether exposure to RF-EMFs could affect DNAm of different classes of REs, such as long interspersed nuclear elements-1 (LINE-1), Alu short interspersed nuclear elements and ribosomal repeats.
View Article and Find Full Text PDFEpigenetic mechanisms regulate gene expression, without changing the DNA sequence, and establish cell-type-specific temporal and spatial expression patterns. Alterations of epigenetic marks have been observed in several pathological conditions, including cancer and neurological disorders. Emerging evidence indicates that a variety of environmental factors may cause epigenetic alterations and eventually influence disease risks.
View Article and Find Full Text PDFEnviron Mol Mutagen
April 2020
Long INterspersed element (LINE-1, L1) retrotransposons are the most abundant transposable elements in the human genome, constituting approximately 17%. They move by a "copy-paste" mechanism, involving reverse transcription of an RNA intermediate and insertion of its cDNA copy at a new site in the genome. L1 retrotransposition (L1-RTP) can cause insertional mutations, alter gene expression, transduce exons, and induce epigenetic dysregulation.
View Article and Find Full Text PDFRepetitive DNA (RE-DNA) was long thought to be silent and inert; only recent research has shown that it can be transcribed and that transcription alteration can be induced by environmental stress conditions, causing human pathological effects. The aim of this study was to determine whether exposure to radiofrequency electromagnetic fields (RF-EMF) could affect the transcription of RE-DNA. To this purpose, three different human cell lines (HeLa, BE(2)C and SH-SY5Y) were exposed to 900 MHz GSM-modulated RF-EMF at specific absorption rate of 1 W/kg or to sham.
View Article and Find Full Text PDFLong INterspersed Element-1 (L1) is a transposable element that can insert copies of itself in new genomic locations causing genomic instability. In somatic cells, L1 retrotransposition activity is usually repressed but somatic L1 retrotransposition has recently been observed during neuronal differentiation. In this study, we evaluate whether L1 elements are differentially active in rat tissues during postnatal development.
View Article and Find Full Text PDFExtremely low frequency magnetic fields (ELF-MF) have been classified as "possibly carcinogenic", but their genotoxic effects are still unclear. Recent findings indicate that epigenetic mechanisms contribute to the genome dysfunction and it is well known that they are affected by environmental factors. To our knowledge, to date the question of whether exposure to ELF-MF can influence epigenetic modifications has been poorly addressed.
View Article and Find Full Text PDFThe possible genotoxicity of extremely low frequency magnetic field (ELF-MF) exposure is still a controversial topic. The most of the reported data suggests that it alone does not affect DNA integrity, but several recent reports have suggested that sinusoidal ELF-MF may increase the effect of known genotoxic agents. Only a few studies deal with non sinusoidal ELF-MF, including pulsed magnetic field (PMF), which are produced by several devices.
View Article and Find Full Text PDFDespite the experimental evidence of significant biological effects of extremely low frequency (ELF) magnetic fields (MFs), the underlying mechanisms are still unclear. Among the few mechanisms proposed, of particular interest is the so called "ion parametric resonance (IPR)" hypothesis, frequently referred to as theoretical support for medical applications. We studied the effect of different combinations of static (DC) and alternating (AC) ELF MFs tuned on resonance conditions for potassium (K(+)) on TEA-sensitive voltage-dependent outward K(+) currents in the human neuroblastoma BE(2)C cell line.
View Article and Find Full Text PDFMob Genet Elements
January 2013
Long interspersed nuclear elements -1 (LINEs, L1s) are retroelements occupying almost 17% of the human genome. L1 retrotransposition can cause deleterious effects on the host-cell and it is generally inhibited by suppressive mechanisms, but it can occur in some specific cells during early development as well as in some tumor cells and in the presence of several environmental factors. In a recent publication we reported that extremely low frequency pulsed magnetic field can affect L1 retrotransposition in neuroblastoma cells.
View Article and Find Full Text PDFMobile genetic elements represent an important source of mutation and genomic instability, and their activity can be influenced by several chemical and physical agents. In this research we address the question whether exposure to extremely low-frequency pulsed magnetic fields (EMF-PMF) could affect the mobility of the human LINE-1(RP) retrotransposon. To this purpose, an in vitro retrotransposition assay was used on human neuroblastoma BE(2) cells exposed for 48h to 1mT, 50Hz PMF, or sham-exposed.
View Article and Find Full Text PDFLong interspersed element-1s (LINE-1 or L1s) are abundant retrotransposons that occur in mammalian genomes and that can cause insertional mutagenesis and genomic instability. L1 activity is generally repressed in most cells and tissues but has been found in some embryonic cells and, in particular, in neural progenitors. Moreover, L1 retrotransposition can be induced by several DNA-damaging agents.
View Article and Find Full Text PDFPurpose: To examine the effect of extremely low frequency magnetic field (ELF-MF) exposure on transposon (Tn) mobility in relation to the exposure time, the frequency and the wave shape of the field applied.
Materials And Methods: Two Escherichia coli model systems were used: (1) Cells unable to express β-galactosidase (LacZ(-)), containing a mini-transposon Tn10 element able to give ability to express β-galactosidase (LacZ(+)) upon its transposition; therefore in these cells transposition activity can be evaluated by analysing LacZ(+) clones; (2) cells carrying Fertility plasmid (F(+)), and a Tn5 element located on the chromosome; therefore in these cells transposition activity can be estimated by a bacterial conjugation assay. Cells were exposed to sinusoidal (SiMF) or pulsed-square wave (PMF) magnetic fields of various frequencies (20, 50, 75 Hz) and for different exposure times (15 and 90 min).
Long Interspersed Nuclear Elements (L1) are retroelements generally repressed in most differentiated somatic cells. Their activity has been observed in some undifferentiated and tumour cells and could be involved in tumour onset and progression. Growing evidences show that the L1 activation can occur in neuronal precursor cells during differentiation process.
View Article and Find Full Text PDFThe aim of the present study was to assess whether exposure to a sinusoidal extremely low frequency magnetic field (ELF-MF; 50 Hz, 1 mT) can affect proliferation and differentiation in the human neuroblastoma cell line BE(2)C, which is representative of high risk neuroblastomas. Cells were subjected to ELF-MF exposure in the presence or absence of a neuronal differentiating agent (all-trans-retinoic acid, ATRA) for 24-72 h. In each experiment, ELF-MF-exposed samples were compared to sham-exposed samples.
View Article and Find Full Text PDFIn our earlier experiments, we found that extremely low frequency magnetic fields (ELF-MF) affect heat shock protein (HSP) expression in wild type Escherichia coli cells. In the present work we investigate the ability of ELF-MF exposure to trigger an increase of DnaK and GroEL protein levels also in E. coli cells not exhibiting the classic heat shock response (HSR) when subjected to a 42 degrees C heat stress.
View Article and Find Full Text PDFThe effects of extremely low frequency magnetic field (ELF-MF)(1 mT, 50 Hz) on the heat shock protein (HSP) synthesis in Escherichia coli were investigated. Two magnetic field signals were studied: sinusoidal (SMF) and pulsed square wave (PMF). It was found that bacteria exposed to SMF showed a significantly higher level of DnaK and GroEL proteins as compared to sham-exposed bacteria as revealed by Western blot, whereas a lower level was observed after PMF exposure.
View Article and Find Full Text PDF