Publications by authors named "Bruna Rabelo Amorim"

Amelogenin isoforms, including full-length amelogenin (AMEL) and leucine-rich amelogenin peptide (LRAP), are major components of the enamel matrix, and are considered as signaling molecules in epithelial-mesenchymal interactions regulating tooth development and periodontal regeneration. Nevertheless, the molecular mechanisms involved are still poorly understood. The aim of the present study was to identify novel binding partners for amelogenin isoforms in the cementoblast (OCCM-30), using an affinity purification assay (GST pull-down) followed by mass spectrometry and immunoblotting.

View Article and Find Full Text PDF

Eugenia dysenterica is a Brazilian tree investigated for its properties and bioactive compounds, which are believed to have both pharmacological and phytochemical therapeutic effects. The leaves of this tree contain tannins, flavonoids, terpenes, and saponins, with reportedly beneficial effects to the human body. Despite these therapeutic applications, its effects have never been tested on oral tissues.

View Article and Find Full Text PDF

This chapter describes methods related to the diagnosis of genetic dental diseases. Based on the present knowledge, clinical phenotyping and next-generation sequencing techniques are discussed. Methods necessary for Sanger sequencing, multiplex ligation-dependent probe amplification, and epigenetic modification methods are detailed.

View Article and Find Full Text PDF

Periodontitis develops as a result of a continuous interaction between host cells and subgingival pathogenic bacteria. The periodontium has a limited capacity for regeneration, probably due to changes in periodontal ligament stem cells (PDLSCs) phenotype. The aim of this study was to evaluate the effects of lipopolysaccharides from Porphyromonas gingivalis (PgLPS) on mesenchymal phenotype and osteoblast/cementoblast (O/C) potential of PDLSCs.

View Article and Find Full Text PDF

This systematic review aimed to evaluate the effects of plants on osteogenic differentiation and mineralization of human periodontal ligament cells. The included studies were selected using five different electronic databases. The reference list of the included studies was crosschecked, and a partial gray literature search was undertaken using Google Scholar and ProQuest.

View Article and Find Full Text PDF

Unlabelled: Periodontal ligament mesenchymal stem cells (PDLMSCs) are an important alternative source of adult stem cells and may be applied for periodontal tissue regeneration, neuroregenerative medicine, and heart valve tissue engineering. However, little is known about the impact of bacterial toxins on the biological properties of PDLSMSCs, including self-renewal, differentiation, and synthesis of extracellular matrix.

Objective: This study investigated whether proliferation, expression of pro-inflammatory cytokines, and osteogenic differentiation of CD105-enriched PDL progenitor cell populations (PDL-CD105(+) cells) would be affected by exposure to bacterial lipopolysaccharide from Escherichia coli (EcLPS).

View Article and Find Full Text PDF

The double-stranded RNA-dependent protein kinase (PKR) plays a critical role in various biological responses including antiviral defense, cell differentiation, apoptosis, and tumorigenesis. In this study, we investigated whether PKR could affect the post-translational modifications of STAT1 protein and whether these modifications regulate osteoblast differentiation. We demonstrated that PKR was necessary for the ubiquitination of STAT1 protein.

View Article and Find Full Text PDF

Osterix is an osteoblast-specific transcriptional factor that is essential for osteoblast differentiation and bone formation. Calcineurin regulates bone formation through modulating osteoblast differentiation. However, post-translational modification of osterix such as phosphorylation and interactions between osterix and calcineurin remains unclear.

View Article and Find Full Text PDF

Bleomycin induces single- and double-stranded breaks in DNA, with consequent mitochondrial membrane aberrations that lead to the apoptotic cell death. It is poorly understood how DNA damage-inducing apoptotic signals are transmitted to mitochondria, from which apoptotic factors are released into the cytoplasm. Here, we investigated the localization of histone H1.

View Article and Find Full Text PDF

Intracellular phosphatase activity has been recognized to play a central role in signal transduction. In the present study, we investigated the effects of calyculin A, an inhibitor of protein phosphatases, on the expression of TNF-alpha mRNA and the possible signaling pathways in mouse osteoblastic MC3T3-E1 cells. The result of semiquantitative RT-PCR showed that calyculin A increased the expression of TNF-alpha mRNA in MC3T3-E1 cells.

View Article and Find Full Text PDF

Osterix is an osteoblast-specific transcriptional factor, required for bone formation and osteoblast differentiation. Here, we identified new Osterix interacting factors by using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Among the candidates, RNA helicase A was identified to interact with Osterix.

View Article and Find Full Text PDF

PTEN is a tumor suppressor gene encoding a phosphatase, and it negatively regulates cell survival mediated by the phosphoinositol 3-kinase (PI3-Kinase)-Akt pathway. To elucidate PTEN expression and its effect on the PI3-kinase-Akt pathway in fibroblasts and macrophages, we investigated the expression of PTEN and the phosphorylation status of Akt in NIH3T3 and RAW264.7 cells treated with LPS.

View Article and Find Full Text PDF

Nuclear factor-kappa B (NF-kappaB) is an essential transcription factor in the control of expression of genes involved in cell growth, differentiation, inflammation, and neoplastic transformation. Previously, we reported that okadaic acid (OA), which is a specific inhibitor of serine/threonine protein phosphatases, induced apoptosis in cells of human osteosarcoma cell line MG63. However, to date, it is not clear whether the phosphorylation status of NF-kappaB could be affected by the treatment with OA.

View Article and Find Full Text PDF

In the present study, we examined the expression and cytolocalization of protein phosphatase type 1 (PP1) isoforms and nucleolin in human osteoblastic cell line MG63 cells at two boundaries in the cell cycle. We treated MG63 cells with hydroxyurea and nocodazole to arrest the cells at the G(1)/S and G(2)/M boundaries, respectively. As judged from the results of Western blot analysis, PP1 isoforms were expressed differently at each boundary of the cell cycle.

View Article and Find Full Text PDF

In this study, we demonstrated that double-stranded RNA-dependent protein kinase (PKR) is required for the calcification of osteoblasts via the signal transducers and activators of transcription 1alpha (STAT1alpha) signaling in vitro. A dominant-negative mutant PKR cDNA, in which the amino acid lysine at 296 was replaced with arginine and which does not have catalytic activity, was transfected into mouse osteoblastic MC3T3-E1 cells; thereby, we established cells that stably expressed the PKR mutant gene (PKR-K/R). Phosphorylation of PKR was not stimulated by polyinosic-polycytidylic acid in the mutant cells.

View Article and Find Full Text PDF