Inflammatory bowel diseases (IBD) are idiopathic disorders characterized by chronic gastrointestinal inflammation. Given conventional therapies' adverse effects and clinical failures, novel approaches are being investigated. Recent studies have highlighted the role of specialized pro-resolving lipid mediators (SPMs) in the active resolution of chronic inflammation.
View Article and Find Full Text PDFPhotoreforming of lignocellulosic biomass to simultaneously produce gas fuels and value-added chemicals has gradually emerged as a promising strategy to alleviate the fossil fuels crisis. Compared to cellulose and hemicellulose, the exploitation and utilization of lignin via photoreforming are still at the early and more exciting stages. This Review systematically summarizes the latest progress on the photoreforming of lignin-derived model components and "real" lignin, aiming to provide insights for lignin photocatalytic valorization from fundamental to industrial applications.
View Article and Find Full Text PDFThe resolution of inflammation is an active process, guided by specialized pro-resolution lipid mediators (SPMs). These mediators originate from polyunsaturated fatty acids, such as omega-3. Sufficient evidence suggests that the beneficial effects attributed to omega-3 are, at least in part, the result of the immunomodulatory action of the SPMs, which act systemically by overcoming inflammation and repairing tissue damage, without suppressing the immune response.
View Article and Find Full Text PDFPhotocatalytic transformation of biomass into value-added chemicals coupled with co-production of hydrogen provides an explicit route to trap sunlight into the chemical bonds. Here, we demonstrate a rational design of ZnCdS solid solution homojunction photocatalyst with a pseudo-periodic cubic zinc blende (ZB) and hexagonal wurtzite (WZ) structure for efficient glucose conversion to simultaneously produce hydrogen and lactic acid. The optimized ZnCdS catalyst consists of a twinning superlattice, has a tuned bandgap, and displays excellent efficiency with respect to hydrogen generation (690 ± 27.
View Article and Find Full Text PDFHydrogen evolution from biomass photoreforming has been widely recognized as a promising strategy for relieving the pressure from energy crisis and environmental pollution, as it could generate sustainable H and value-added bioproducts simultaneously. Combining p-type semiconductors with n-type semiconductors to form n-p heterojunction is an effective strategy to improve the photocatalytic quantum efficiency by enhancing the separation of photogenerated electrons and holes, which could greatly facilitate the realization of such biomass photorefinery concept. However, the incompact contact between the n-type and p-type semiconductors often induces the aggregation of photogenerated electrons and holes.
View Article and Find Full Text PDFNon-alcoholic fatty liver disease (NAFLD) is a chronic disease with several degrees of histological features which may progress to cirrhosis. Obesity is an important risk factor and although NAFLD has no specific pharmacological treatment, bariatric surgery has been associated with NAFLD regression in severely obese patients. However, few longitudinal histological studies support this finding.
View Article and Find Full Text PDF