The publication of the European Commission's Farm to Fork Strategy has sparked a heated debate between those who advocate the intensification of agriculture in the name of food security and those who recommend its de-intensification for environmental reasons. The design of quantified scenarios is a key approach to objectively evaluate the arguments of the two sides. To this end, we used the accounting methodology GRAFS (Generalized Representation of Agri-Food Systems) to describe the agri-food system of Europe divided into 127 geographical units of similar agricultural area, in terms of nitrogen (N) fluxes across cropland, grassland, livestock, and human consumption.
View Article and Find Full Text PDFSci Total Environ
February 2023
We have quantified inputs and fate of nutrients in European fresh and marine waters from 1990 to 2018. We have used the conceptual model GREEN to assess the impact of efforts on curbing nutrient pollution in European regions. In the first two decades, i.
View Article and Find Full Text PDFUnderstanding how anthropogenic pressures affect river ecological status is pivotal to designing effective management strategies. Knowledge on river aquatic habitats status in Europe has increased tremendously since the introduction of the European Union Water Framework Directive, yet heterogeneities in mandatory monitoring and reporting still limit identification of patterns at continental scale. Concurrently, several model and data-based indicators of anthropogenic pressures to freshwater that cover the continent consistently have been developed.
View Article and Find Full Text PDFESPRES (Efficient Strategies for anthropogenic Pressure Reduction in European waterSheds) is a web-based Decision Support System (DSS) designed to explore management options for achieving environmental targets in European freshwaters. The tool integrates multi-objective optimization (MOO) algorithms for selecting the best management options in a river basin and models assessing the consequent changes in the water quantity (water flow) and quality (nutrient concentration). The MOO engine identifies Pareto front strategies that are trade-offs between environmental objectives for water bodies and the effort required for reducing the pressures.
View Article and Find Full Text PDFAgricultural production systems are sensitive to weather and climate anomalies and extremes as well as to other environmental and socio-economic adverse events. An adequate evaluation of the resilience of such systems helps to assess food security and the capacity of society to cope with the effects of global warming and the associated increase of climate extremes. Here, we propose and apply a simple indicator of resilience of annual crop production that can be estimated from crop production time series.
View Article and Find Full Text PDFEstimation of domestic waste emissions to waters is needed for pollution assessment and modelling. We assessed quantity and location of domestic waste emissions to European waters for the 2010s. Specifically, we considered discharges of domestic waste Population Equivalent (PE, the amount of waste that equals to 60 g per day of Biochemical Oxygen Demand), and mean annual loads (t/y) of total nitrogen, total phosphorus, and 5-days Biochemical Oxygen Demand.
View Article and Find Full Text PDFStudy Region: Mediterranean River Basins.
Study Focus: Human activities and consequent pollution have put the freshwater and marine ecosystems of the Mediterranean region under pressure, with high risk of eutrophication phenomena. In this study, an extended version of the Geospatial Regression Equation for European Nutrient losses model (GREEN), originally developed for estimating nutrient loads from diffuse and point sources in Europe, was extended to include additional nutrient sources using a grid cell discretization.
Biochemical Oxygen Demand (BOD) is an indicator of organic pollution in freshwater bodies correlated to microbiological contamination. High BOD concentrations reduce oxygen availability, degrade aquatic habitats and biodiversity, and impair water use. High BOD loadings to freshwater systems are mainly coming from anthropogenic sources, comprising domestic and livestock waste, industrial emissions, and combined sewer overflows.
View Article and Find Full Text PDFThe Water Framework Directive (WFD) is a pioneering piece of legislation that aims to protect and enhance aquatic ecosystems and promote sustainable water use across Europe. There is growing concern that the objective of good status, or higher, in all EU waters by 2027 is a long way from being achieved in many countries. Through questionnaire analysis of almost 100 experts, we provide recommendations to enhance WFD monitoring and assessment systems, improve programmes of measures and further integrate with other sectoral policies.
View Article and Find Full Text PDFA contingent valuation approach is used to estimate how households value different multipurpose infrastructures (conventional or green) for managing flood risk and water pollution. As a case study we consider the Gorla Maggiore water park located in the Lombardy Region, in Northern Italy. The park is a neo-ecosystem including an infrastructure to treat waste water and store excess rain water, built in 2011 on the shore of the Olona River in an area previously used for poplar plantation.
View Article and Find Full Text PDFSci Total Environ
December 2017
This study provides an innovative process-based modelling approach using the SWAT model and shows its application to support the implementation of the European environmental policies in large river basins. The approach involves several pioneering modelling aspects: the inclusion of current management practices; an innovative calibration and validation methodology of streamflow and water quality; a sequential calibration starting from crop yields, followed by streamflow and nutrients; and the use of concentrations instead of loads in the calibration. The approach was applied in the Danube River Basin (800,000km), the second largest river basin in Europe, that is under great nutrients pressure.
View Article and Find Full Text PDFIn this paper we present a case study of integrated ecosystem and economic accounting based on the System of Environmental Economic Accounting - Experimental Ecosystem Accounts (SEEA-EEA). We develop accounts, in physical and monetary terms, for the water purification ecosystem service in Europe over a 20-year time period (1985-2005). The estimation of nitrogen retention is based on the GREEN biophysical model, within which we impose a sustainability threshold to obtain the physical indicators of capacity - the ability of an ecosystem to sustainably supply ecosystem services.
View Article and Find Full Text PDFSci Total Environ
January 2014
Agriculture is responsible for large scale water quality degradation and is estimated to contribute around 55% of the nitrogen entering the European Seas. The key policy instrument for protecting inland, transitional and coastal water resources is the Water Framework Directive (WFD). Reducing nutrient losses from agriculture is crucial to the successful implementation of the WFD.
View Article and Find Full Text PDFGlobal nitrogen fixation contributes 413 Tg of reactive nitrogen (Nr) to terrestrial and marine ecosystems annually of which anthropogenic activities are responsible for half, 210 Tg N. The majority of the transformations of anthropogenic Nr are on land (240 Tg N yr(-1)) within soils and vegetation where reduced Nr contributes most of the input through the use of fertilizer nitrogen in agriculture. Leakages from the use of fertilizer Nr contribute to nitrate (NO3(-)) in drainage waters from agricultural land and emissions of trace Nr compounds to the atmosphere.
View Article and Find Full Text PDFSci Total Environ
November 2011
Cases of severe eutrophication are still observed in European surface waters even though tough regulation has been in place since the beginning of the 1990s to control nutrient losses and inputs in the environment. The purpose of this paper is to evaluate the evolution since 1991 of the quality of the water entering European seas in terms of the concentration of major nutrients (nitrogen and phosphorus), and to analyze the effectiveness of implemented national/international measures and EU legislation in reducing water nutrient pollution. Despite the reduction in large portions of the European territory of agricultural nutrient applications and nutrient point source emissions, the impact on water quality is limited.
View Article and Find Full Text PDF