Publications by authors named "Bruna Gregatti Carvalho"

mRNA therapy is the intracellular delivery of messenger RNA (mRNA) to produce desired therapeutic proteins. Developing strategies for local mRNA delivery is still required where direct intra-articular injections are inappropriate for targeting a specific tissue. The mRNA delivery efficiency depends on protecting nucleic acids against nuclease-mediated degradation and safe site-specific intracellular delivery.

View Article and Find Full Text PDF

Amphotericin B (AmB) is the gold standard for antifungal drugs. However, AmB systemic administration is restricted because of its side effects. Here, we report AmB loaded in natural rubber latex (NRL), a sustained delivery system with low toxicity, which stimulates angiogenesis, cell adhesion and accelerates wound healing.

View Article and Find Full Text PDF

As miniaturized and simplified stem cell-derived 3D organ-like structures, organoids are rapidly emerging as powerful tools for biomedical applications. With their potential for personalized therapeutic interventions and high-throughput drug screening, organoids have gained significant attention recently. In this review, we discuss the latest developments in engineering organoids and using materials engineering, biochemical modifications, and advanced manufacturing technologies to improve organoid culture and replicate vital anatomical structures and functions of human tissues.

View Article and Find Full Text PDF

Psoriasis is a disease that causes keratinocytes to proliferate ten times faster than normal, resulting in chronic inflammation and immune cell infiltration in the skin. Aloe vera (A. vera) creams have been used topically for treating psoriasis because they contain several antioxidant species; however, they have several limitations.

View Article and Find Full Text PDF

Efficient delivery of nanometric vectors complexed with nanoparticles at a target tissue without spreading to other tissues is one of the main challenges in gene therapy. One means to overcome this problem is to confine such vectors within microgels that can be placed in a target tissue to be released slowly and locally. Herein, a conventional optical microscope coupled to a common smartphone was employed to monitor the microfluidic production of monodisperse alginate microgels containing nanoparticles as a model for the encapsulation of vectors.

View Article and Find Full Text PDF

Drug delivery for treatment of chronic diseases relies on the effective delivery of payload materials into the target cells in a long-term release. In this context, the present study investigated hybrid microgels as platforms to carry nanoparticles to drug delivery. Hybrid microgels were produced with silk fibroin (SF) and chondroitin sulfate (CS), and alginate (ALG) by droplet microfluidics.

View Article and Find Full Text PDF

This chapter describes the synthesis of stealth and cationic liposomes and their complexation with plasmid DNA to generate lipoplexes for gene delivery applications. Two techniques are presented: a top-down approach which requires a second step of processing for downsizing the liposomes (i.e.

View Article and Find Full Text PDF