The aims of this work were to optimize the production of l-asparaginase II enzyme in by different fed-batch cultivation strategies using a benchtop bioreactor and to evaluate the therapeutic potential of the recombinant enzyme against different acute lymphoblastic leukemia cell lines. The highest enzyme activities (∼98,000 U/L) were obtained in cultures using the DO-stat feeding strategy with induction in 18 h of culture. Under these experimental conditions, the maximum values for recombinant l-asparaginase II (rASNase) yield per substrate, rASNase yield per biomass, and productivity were approximately 1204 U/g, 3660 U/g, and 3260 U/(L·h), respectively.
View Article and Find Full Text PDFThe aim of this study was to synthesize iron magnetic nanoparticles functionalized with histidine and nickel (FeO-His-Ni) to be used as support materials for oriented immobilization of His-tagged recombinant enzymes of high molecular weight, using β-galactosidase as a model. The texture, morphology, magnetism, thermal stability, pH and temperature reaction conditions, and the kinetic parameters of the biocatalyst obtained were assessed. In addition, the operational stability of the biocatalyst in the lactose hydrolysis of cheese whey and skim milk by batch processes was also assessed.
View Article and Find Full Text PDFThis study aimed to produce and characterize a recombinant Kluyveromyces sp. β-galactosidase fused to a cellulose-binding domain (CBD) for industrial application. In expression assays, the highest enzymatic activities occurred after 48 h induction on Escherichia coli C41(DE3) strain at 20 °C in Terrific Broth (TB) culture medium, using isopropyl β-d-1-thiogalactopyranoside (IPTG) 0.
View Article and Find Full Text PDFObjective: The aim of the present study was to evaluate the efficiency of lactose derived from cheese whey and cheese whey permeate as inducer of recombinant Kluyveromyces sp. β-galactosidase enzyme produced in Escherichia coli. Two E.
View Article and Find Full Text PDF