Microbial pathogens, such as Trypanosoma brucei, have an enormous impact on global health and economic systems. Protein kinase A of T. brucei is an attractive drug target as it is an essential enzyme which differs significantly from its human homolog.
View Article and Find Full Text PDFis a highly destructive plant pathogen and an emerging pathogen of humans. Like other ascomycete fungi, secretes α-pheromone, a small peptide that functions both as a chemoattractant and as a quorum-sensing signal. Three of the ten amino acid residues of α-pheromone are tryptophan, an amino acid whose sidechain has high affinity for lipid bilayers, suggesting a possible interaction with biological membranes.
View Article and Find Full Text PDFMicrobial electrosynthesis is an emerging green technology that explores the capability of a particular group of microorganisms to drive their metabolism toward the production of hydrogen or value-added chemicals from electrons supplied by electrode surfaces. The cytochrome PccH showed the largest increase in transcription when electrons are supplied to Geobacter sulfurreducens biofilms. Gene knock-out experiments have shown that the electron transfer toward G.
View Article and Find Full Text PDFTACC3 is a centrosomal adaptor protein that plays important roles during mitotic spindle assembly. It interacts with chTOG/XMAP215, which catalyzes the addition of tubulin dimers during microtubule growth. A 3D coiled-coil model for this interaction is available but the structural details are not well described.
View Article and Find Full Text PDFBiochim Biophys Acta Bioenerg
September 2017
Despite the growing number of carbohydrate-binding modules (CBMs) that are being uncovered, information on the structural determinants for the sugar-binding regions at atomic resolution is scarce. It is widely accepted that aromatic and H-bonding interactions govern these processes, and reported simulations and theoretical calculations are valuable tools to quantify and understand these interactions. We present here a computational model derived from experimental data that provide a unique atomistic picture of an uncharacterized binding mode of laminarin to the CBM family 43.
View Article and Find Full Text PDFApoptin is a nonstructural protein encoded by one of the three open reading frames of the chicken anemia virus genome. It has attracted a great deal of interest due to its ability to induce apoptosis in multiple transformed and malignant mammalian cell lines without affecting primary and non-transformed cells. However, the use of Apoptin as an anticancer drug is restricted by its strong tendency to aggregate.
View Article and Find Full Text PDFDuring sexual development ascomycete fungi produce two types of peptide pheromones termed a and α. The α pheromone from the budding yeast , a 13-residue peptide that elicits cell cycle arrest and chemotropic growth, has served as paradigm for the interaction of small peptides with their cognate G protein-coupled receptors. However, no structural information is currently available for α pheromones from filamentous ascomycetes, which are significantly shorter and share almost no sequence similarity with the homolog.
View Article and Find Full Text PDFThe periplasmic triheme cytochrome PpcA from Geobacter sulfurreducens is highly abundant; it is the likely reservoir of electrons to the outer surface to assist the reduction of extracellular terminal acceptors; these include insoluble metal oxides in natural habitats and electrode surfaces from which electricity can be harvested. A detailed thermodynamic characterization of PpcA showed that it has an important redox-Bohr effect that might implicate the protein in e/H coupling mechanisms to sustain cellular growth. This functional mechanism requires control of both the redox state and the protonation state.
View Article and Find Full Text PDFApoptin is a 121 residue protein which forms large, soluble aggregates and possesses an exceptionally selectively cytotoxic action on cancer cells. In the accompanying paper, we described the design, production and initial characterization of an Apoptin truncated variant called H-ApopΔProΔLeu. Whereas both the variant and wild type protein possess similar selective cytotoxicity against cancer cells following transfection, only the variant is cytotoxic when added externally.
View Article and Find Full Text PDFThe mechanism by which the HIV-1 MPER epitope is recognized by the potent neutralizing antibody 10E8 at membrane interfaces remains poorly understood. To solve this problem, we have optimized a 10E8 peptide epitope and analyzed the structure and binding activities of the antibody in membrane and membrane-like environments. The X-ray crystal structure of the Fab-peptide complex in detergents revealed for the first time that the epitope of 10E8 comprises a continuous helix spanning the gp41 MPER/transmembrane domain junction (MPER-N-TMD; Env residues 671-687).
View Article and Find Full Text PDFAcute infection by Gram-negative pathogens can induce an exacerbated immune response that leads to lethal septic shock syndrome. Bacterial lipopolysaccharide (LPS) is a major pathogen-associated molecular pattern molecule that can initiate massive and lethal immune system stimulation. Therefore, the development of new and effective LPS-neutralizing agents is a top priority.
View Article and Find Full Text PDFIt has been suggested that DYNLT1, a dynein light chain known to bind to various cellular and viral proteins, can function both as a molecular clamp and as a microtubule-cargo adapter. Recent data have shown that the DYNLT1 homodimer binds to two dynein intermediate chains to subsequently link cargo proteins such as the guanine nucleotide exchange factor Lfc or the small GTPases RagA and Rab3D. Although over 20 DYNLT1-interacting proteins have been reported, the exact sequence requirements that enable their association to the canonical binding groove or to the secondary site within the DYNLT1 surface are unknown.
View Article and Find Full Text PDFThe titin I27 module from human cardiac titin has become a standard in protein nanomechanics. A proline-scanning study of its mechanical clamp found three mechanically hypomorphic mutants and a paradoxically hypermorphic mutant (I27Y9P). Both types of mutants have been commonly used as substrates of several protein unfoldase machineries in studies relating protein mechanostability to translocation or degradation rates.
View Article and Find Full Text PDFThe short membrane-active peptide BP100 [KKLFKKILKYL-NH2] is known as an effective antimicrobial and cell penetrating agent. For a functional alanine scan each of the 11 amino acids was replaced with deuterated Ala-d3, one at a time. MIC assays showed that a substitution of Lys did not affect the antimicrobial activity, but it decreased when a hydrophobic residue was replaced.
View Article and Find Full Text PDFCoordination polymers and metal-organic frameworks are appealing as synthetic hosts for mediating chemical reactions. Here we report the preparation of a mesoscopic metal-organic structure based on single-layer assembly of aluminium chains and organic alkylaryl spacers. The material markedly accelerates condensation reactions in water in the absence of acid or base catalyst, as well as organocatalytic Michael-type reactions that also show superior enantioselectivity when comparing with the host-free transformation.
View Article and Find Full Text PDFAmyloids are ordered protein aggregates that are typically associated with neurodegenerative diseases and cognitive impairment. By contrast, the amyloid-like state of the neuronal RNA binding protein Orb2 in Drosophila was recently implicated in memory consolidation, but it remains unclear what features of this functional amyloid-like protein give rise to such diametrically opposed behaviour. Here, using an array of biophysical, cell biological and behavioural assays we have characterized the structural features of Orb2 from the monomer to the amyloid state.
View Article and Find Full Text PDFMultiheme cytochromes have been implicated in Geobacter sulfurreducens extracellular electron transfer (EET). These proteins are potential targets to improve EET and enhance bioremediation and electrical current production by G. sulfurreducens.
View Article and Find Full Text PDFIt has been suggested that DYNLT, a dynein light chain known to bind to various cellular and viral proteins, can function as a microtubule-cargo adaptor. Recent data showed that DYNLT links the small GTPase Rab3D to microtubules and, for this to occur, the DYNLT homodimer needs to display a binding site for dynein intermediate chain together with a binding site for the small GTPase. We have analysed in detail how RagA, another small GTPase, associates to DYNLT.
View Article and Find Full Text PDF