Publications by authors named "Bruin N"

Background: Chemotherapy-induced neuropathic pain (CIPN) describes a pathological pain state that occurs dose-dependently as a side effect and can limit or even impede an effective cancer therapy. Unfortunately, current treatment possibilities for CIPN are remarkably confined and mostly inadequate as CIPN therapeutics themselves consist of low effectiveness and may induce severe side effects, pointing out CIPN as pathological entity with an emerging need for novel treatment targets. Here, we investigated whether the novel and highly specific FKBP51 inhibitor SAFit2 reduces paclitaxel-induced neuropathic pain.

View Article and Find Full Text PDF

Background And Purpose: Xerostomia remains a common side effect of radiotherapy (RT) for patients with head and neck (H&N) cancer despite advancements in treatment planning and delivery. Secretory salivary gland cells express the prostate-specific membrane antigen (PSMA), and show significant uptake on PET scans using Ga/F-PSMA-ligands. We aimed to objectively quantify the dose-response of salivary glands to RT using PSMA PET.

View Article and Find Full Text PDF

Background: Neuropathic pain is experienced worldwide by patients suffering from nerve injuries, infectious or metabolic diseases or chemotherapy. However, the treatment options are still limited because of low efficacy and sometimes severe side effects. Recently, the deficiency of FKBP51 was shown to relieve chronic pain, revealing FKBP51 as a potential therapeutic target.

View Article and Find Full Text PDF

Background: High urinary activity in urinary bladder and ureters may hamper interpretation of prostate cancer and regional nodal metastases in prostate-specific membrane antigen (PSMA) PET/CT. The goal of this study was to assess effects of furosemide and choice of tracer on urinary activity in the bladder and ureters, as well as on occurrence of peri-bladder artefacts in PET/CT.

Methods: Four cohorts with a total of 202 men staged with PSMA PET/CT for prostate cancer received either Ga-PSMA-11 as tracer, with (cohort G+) or without 10mg intravenous furosemide (G-) concurrent with tracer, or F-DCFPyL with (F+) or without furosemide (F-).

View Article and Find Full Text PDF

A causal contribution of hyperhomocysteinemia to cognitive decline and Alzheimer's disease (AD), as well as potential prevention or mitigation of the pathology by dietary intervention, have frequently been subjects of controversy. In the present study, we attempted to further elucidate the impact of elevated homocysteine (HCys) and homocysteic acid (HCA) levels, induced by dietary B-vitamin deficiency, and micronutrient supplementation on AD-like pathology, which was simulated using the amyloid-based knock-in mouse model. For this purpose, cognitive assessment was complemented by analyses of parameters in whole blood, serum, CSF, and brain tissues from the mice.

View Article and Find Full Text PDF

SARS-CoV-2 uses the human cell surface protein angiotensin converting enzyme 2 (ACE2) as the receptor by which it gains access into lung and other tissue. Early in the pandemic, there was speculation that a number of commonly used medications-including ibuprofen and other non-steroidal anti-inflammatory drugs (NSAIDs)-have the potential to upregulate ACE2, thereby possibly facilitating viral entry and increasing the severity of COVID-19. We investigated the influence of the NSAIDS with a range of cyclooxygenase (COX)1 and COX2 selectivity (ibuprofen, flurbiprofen, etoricoxib) and paracetamol on the level of ACE2 mRNA/protein expression and activity as well as their influence on SARS-CoV-2 infection levels in a Caco-2 cell model.

View Article and Find Full Text PDF

Disturbances in the one-carbon metabolism are often indicated by altered levels of the endogenous amino acid homocysteine (HCys), which is additionally discussed to causally contribute to diverse pathologies. In the first part of the present review, we profoundly and critically discuss the metabolic role and pathomechanisms of HCys, as well as its potential impact on different human disorders. The use of adequate animal models can aid in unravelling the complex pathological processes underlying the role of hyperhomocysteinemia (HHCys).

View Article and Find Full Text PDF

Rationale: PSMA-directed therapy for metastatic prostate cancer is gaining adoption as a treatment option. However, accumulation of Lu/Ac-PSMA in the salivary glands remains a problem, with risk of dose-limiting xerostomia and potentially severe effect on the quality of life. Gustatory stimulation is an approach that has commonly been used in radioactive iodine therapy to reduce accumulation in the salivary glands.

View Article and Find Full Text PDF

While high risk of failure is an inherent part of developing innovative therapies, it can be reduced by adherence to evidence-based rigorous research practices. Supported through the European Union's Innovative Medicines Initiative, the EQIPD consortium has developed a novel preclinical research quality system that can be applied in both public and private sectors and is free for anyone to use. The EQIPD Quality System was designed to be suited to boost innovation by ensuring the generation of robust and reliable preclinical data while being lean, effective and not becoming a burden that could negatively impact the freedom to explore scientific questions.

View Article and Find Full Text PDF

Purpose: To test if the relative change in FDG-PET SUV over the course of treatment was associated with disease progression and overall survival. Additionally, the prognostic values of other first-order PET-metric changes were investigated.

Methods: The study included 38 patients with stage II-III NSCLC, who underwent concurrent chemoradiotherapy.

View Article and Find Full Text PDF

Rationale: Salivary glands are highly perfused and express the prostate-specific membrane antigen (PSMA) receptor as well as the sodium-iodide symporter. As a consequence, treatment with Lu/Ac-PSMA for prostate cancer or I for thyroid cancer leads to a high radiation dose in the salivary glands, and patients can be confronted with persistent xerostomia and reduced quality of life. Salivation can be inhibited using an antimuscarinic pharmaceutical, such as glycopyrronium bromide (GPB), which may also reduce perfusion.

View Article and Find Full Text PDF

Radiation therapy is an effective treatment modality for a variety of cancers. Despite several advances in delivery techniques, its main drawback remains the deposition of dose in normal tissues which can result in toxicity. Common practices of evaluating toxicity, using questionnaires and grading systems, provide little underlying information beyond subjective scores, and this can limit further optimization of treatment strategies.

View Article and Find Full Text PDF

IL-38 is an IL-1 family receptor antagonist that restricts IL-17-driven inflammation by limiting cytokine production from macrophages and T cells. In the current study, we aimed to explore its role in experimental autoimmune encephalomyelitis in mice, which is, among others, driven by IL-17. Unexpectedly, IL-38-deficient mice showed strongly reduced clinical scores and histological markers of experimental autoimmune encephalomyelitis.

View Article and Find Full Text PDF

Hyperhomocysteinemia has been suggested potentially to contribute to a variety of pathologies, such as Alzheimer's disease (AD). While the impact of hyperhomocysteinemia on AD has been investigated extensively, there are scarce data on the effect of AD on hyperhomocysteinemia. The aim of this in vivo study was to investigate the kinetics of homocysteine (HCys) and homocysteic acid (HCA) and effects of AD-like pathology on the endogenous levels.

View Article and Find Full Text PDF

Background: Hyperhomocysteinemia is considered a possible contributor to the complex pathology of Alzheimer's disease (AD). For years, researchers in this field have discussed the apparent detrimental effects of the endogenous amino acid homocysteine in the brain. In this study, the roles of hyperhomocysteinemia driven by vitamin B deficiency, as well as potentially beneficial dietary interventions, were investigated in the novel knock-in mouse model for AD, simulating an early stage of the disease.

View Article and Find Full Text PDF

Interleukin-38 (IL-38) is a cytokine of the IL-1 family with a role in chronic inflammation. However, its main cellular targets and receptors remain obscure. IL-38 is highly expressed in the skin and downregulated in psoriasis patients.

View Article and Find Full Text PDF

Background: Myeloperoxidase is used as a marker and diagnostic tool for inflammatory processes. Hypochlorous acid produced by myeloperoxidase oxidizes luminol to produce light. By injecting luminol into experimental animals, inflammatory processes can be tracked in real-time by bioluminescence imaging (BLI).

View Article and Find Full Text PDF

This article was migrated. The article was marked as recommended. Patients with diverse cultural backgrounds experience barriers in access to care, and do not always receive the care they need.

View Article and Find Full Text PDF

Flurbiprofen (F) is a nonsteroidal anti-inflammatory drug (NSAID) used therapeutically as the racemate of (R)-enantiomer and (S)-enantiomer. The inversion of RF to SF and vice versa was investigated in C57Bl/6 and SJL mice and Dark Agouti and Lewis rats. The enzyme α-methylacyl-CoA racemase (AMACR) is involved in the chiral inversion pathway that converts members of the 2-arylpropionic acid NSAIDs from the R-enantiomer to the S-enantiomer.

View Article and Find Full Text PDF

Bioactive lipids contribute to the pathophysiology of multiple sclerosis. Here, we show that lysophosphatidic acids (LPAs) are dysregulated in multiple sclerosis (MS) and are functionally relevant in this disease. LPAs and autotaxin, the major enzyme producing extracellular LPAs, were analyzed in serum and cerebrospinal fluid in a cross-sectional population of MS patients and were compared with respective data from mice in the experimental autoimmune encephalomyelitis (EAE) model, spontaneous EAE in TCR mice, and EAE in Lpar2 mice.

View Article and Find Full Text PDF

Background: Gut microbial colonization and development of immune competence are intertwined and are influenced by early-life nutritional, environmental, and management factors. Perturbation of the gut microbiome at young age affects the crosstalk between intestinal bacteria and host cells of the intestinal mucosa.

Results: We investigated the effect of a perturbation of the normal early life microbial colonization of the jejunum in 1-day old chickens.

View Article and Find Full Text PDF

Chemotherapy-induced peripheral neuropathic pain (CIPNP) is a severe dose- and therapy-limiting side effect of widely used cytostatics that is particularly difficult to treat. Here, we report increased expression of the cytochrome-P-epoxygenase CYP2J6 and increased concentrations of its linoleic acid metabolite 9,10-EpOME (9,10-epoxy-12Z-octadecenoic acid) in dorsal root ganglia (DRGs) of paclitaxel-treated mice as a model of CIPNP. The lipid sensitizes TRPV1 ion channels in primary sensory neurons and causes increased frequency of spontaneous excitatory postsynaptic currents in spinal cord nociceptive neurons, increased CGRP release from sciatic nerves and DRGs, and a reduction in mechanical and thermal pain hypersensitivity.

View Article and Find Full Text PDF

In the present study, our aim was to investigate whether the novel highly selective 5-hydroxytryptamine6 (5-HT6) receptor antagonist SLV can ameliorate impairments in cognition and social interaction with potential relevance for both schizophrenia and Alzheimer's disease (AD). SLV sub-chronically - treated Wistar rats reared in isolation showed significantly enhanced prepulse inhibition (PPI) and object recognition performance when compared to vehicle - treated rats. In the isolated rats, also a significant reduction in expression of hippocampal neural cell adhesion molecule polysialylation (NCAM-PSA) was found which was ameliorated following treatment with SLV (30mg/kg).

View Article and Find Full Text PDF

As a rapidly growing class of therapeutics, biopharmaceuticals have conquered the global market. Despite the great potential from a therapeutic perspective, such formulations often require frequent injections due to their short half-life. Aiming to establish a parenteral dosage form with prolonged release properties, a biodegradable implant was developed, based on a combination of nanoencapsulation of protein-heparin complexes, creation of a slow release matrix by freeze-drying, and compression using hyaluronan and methylcellulose.

View Article and Find Full Text PDF