Publications by authors named "Brugna M"

The observation that some homologous enzymes have the same active site but very different catalytic properties demonstrates the importance of long-range effects in enzyme catalysis, but these effects are often difficult to rationalize. The NiFe hydrogenases 1 and 2 (Hyd 1 and Hyd 2) from both consist of a large catalytic subunit that embeds the same dinuclear active site and a small electron-transfer subunit with a chain of three FeS clusters. Hyd 1 is mostly active in H oxidation and resistant to inhibitors, whereas Hyd 2 also catalyzes H production and is strongly inhibited by O and CO.

View Article and Find Full Text PDF

Protein Film Electrochemistry is a technique in which a redox enzyme is directly wired to an electrode, which substitutes for the natural redox partner. In this technique, the electrical current flowing through the electrode is proportional to the catalytic activity of the enzyme. However, in most cases, the amount of enzyme molecules contributing to the current is unknown and the absolute turnover frequency cannot be determined.

View Article and Find Full Text PDF

The tetrameric cytoplasmic FeFe hydrogenase Hnd from (formely ) catalyses H oxidation and couples the exergonic reduction of NAD to the endergonic reduction of a ferredoxin by using a flavin-based electron-bifurcating mechanism. Regarding its implication in the bacterial physiology, we previously showed that Hnd, which is non-essential when bacteria grow fermentatively on pyruvate, is involved in ethanol metabolism. Under these conditions, it consumes H to produce reducing equivalents for ethanol production as a fermentative product.

View Article and Find Full Text PDF

Solidesulfovibrio fructosivorans (formely Desulfovibrio fructosovorans), an anaerobic sulfate-reducing bacterium, possesses six gene clusters encoding six hydrogenases catalyzing the reversible oxidation of hydrogen gas (H) into protons and electrons. One of these, named Hnd, was demonstrated to be an electron-bifurcating hydrogenase Hnd (Kpebe et al., 2018).

View Article and Find Full Text PDF

Desulfovibrio fructosovorans, a sulfate-reducing bacterium, possesses six gene clusters encoding six hydrogenases catalyzing the reversible oxidation of H into protons and electrons. Among them, Hnd is an electron-bifurcating hydrogenase, coupling the exergonic reduction of NAD to the endergonic reduction of a ferredoxin with electrons derived from H . It was previously hypothesized that its biological function involves the production of NADPH necessary for biosynthetic purposes.

View Article and Find Full Text PDF
Article Synopsis
  • Two distinctive polypeptide modules, the "Y-junction" and the "flavin" module, are found in various enzymes like complex I and hydrogenases, indicating their functional diversity.
  • The flavin module interacts with the substrate NAD(P) and facilitates electron exchange, while the Y-junction module acts as an electron transfer hub with multiple entry and exit sites.
  • Research into genomes shows that these modules likely existed in the last universal common ancestor, suggesting an evolutionary link between them and the development of complex I.
View Article and Find Full Text PDF

Hnd, an FeFe hydrogenase from , is a tetrameric enzyme that can perform flavin-based electron bifurcation. It couples the oxidation of H to both the exergonic reduction of NAD and the endergonic reduction of a ferredoxin. We previously showed that Hnd retains activity even when purified aerobically unlike other electron-bifurcating hydrogenases.

View Article and Find Full Text PDF

Background: The ability of some photosynthetic microorganisms, particularly cyanobacteria and microalgae, to produce hydrogen (H) is a promising alternative for renewable, clean-energy production. However, the most recent, related studies point out that much improvement is needed for sustainable cyanobacterial-based H production to become economically viable. In this study, we investigated the impact of induced O-consumption on H photoproduction yields in the heterocyte-forming, N-fixing cyanobacterium Nostoc PCC7120.

View Article and Find Full Text PDF

Hydrogen metabolism plays a central role in sulfate-reducing bacteria of the Desulfovibrio genus and is based on hydrogenases that catalyze the reversible conversion of protons into dihydrogen. These metabolically versatile microorganisms possess a complex hydrogenase system composed of several enzymes of both [FeFe]- and [NiFe]-type that can vary considerably from one Desulfovibrio species to another. This review covers the molecular and physiological aspects of hydrogenases and H metabolism in Desulfovibrio but focuses particularly on our model bacterium Desulfovibrio fructosovorans.

View Article and Find Full Text PDF

The genome of the sulfate-reducing and anaerobic bacterium Desulfovibrio fructosovorans encodes different hydrogenases. Among them is Hnd, a tetrameric cytoplasmic [FeFe] hydrogenase that has previously been described as an NADP-specific enzyme (Malki et al., 1995).

View Article and Find Full Text PDF

Strictly anaerobic bacteria of the Clostridium genus have attracted great interest as potential cell factories for molecular hydrogen production purposes. In addition to being a useful approach to this process, dark fermentation has the advantage of using the degradation of cheap agricultural residues and industrial wastes for molecular hydrogen production. However, many improvements are still required before large-scale hydrogen production from clostridial metabolism is possible.

View Article and Find Full Text PDF

Electron bifurcation is here described as a special case of the continuum of electron transfer reactions accessible to two-electron redox compounds with redox cooperativity. We argue that electron bifurcation is foremost an electrochemical phenomenon based on (a) strongly inverted redox potentials of the individual redox transitions, (b) a high endergonicity of the first redox transition, and (c) an escapement-type mechanism rendering completion of the first electron transfer contingent on occurrence of the second one. This mechanism is proposed to govern both the traditional quinone-based and the newly discovered flavin-based versions of electron bifurcation.

View Article and Find Full Text PDF

The conversion of solar energy into hydrogen represents a highly attractive strategy for the production of renewable energies. Photosynthetic microorganisms have the ability to produce H from sunlight but several obstacles must be overcome before obtaining a sustainable and efficient H production system. Cyanobacteria harbor [NiFe] hydrogenases required for the consumption of H.

View Article and Find Full Text PDF

Shewanella species are facultative anaerobic bacteria that colonize redox-stratified habitats where O2 and nutrient concentrations fluctuate. The model species Shewanella oneidensis MR-1 possesses genes coding for three terminal oxidases that can perform O2 respiration: a bd-type quinol oxidase and cytochrome c oxidases of the cbb3-type and the A-type. Whereas the bd- and cbb3-type oxidases are routinely detected, evidence for the expression of the A-type enzyme has so far been lacking.

View Article and Find Full Text PDF

The extremely acidophilic archaeon Ferroplasma acidiphilum is found in iron-rich biomining environments and is an important micro-organism in naturally occurring microbial communities in acid mine drainage. F. acidiphilum is an iron oxidizer that belongs to the order Thermoplasmatales (Euryarchaeota), which harbors the most extremely acidophilic micro-organisms known so far.

View Article and Find Full Text PDF

The genome of the facultative anaerobic γ-proteobacterium Shewanella oneidensis MR-1 encodes for three terminal oxidases: a bd-type quinol oxidase and two heme-copper oxidases, a A-type cytochrome c oxidase and a cbb 3-type oxidase. In this study, we used a biochemical approach and directly measured oxidase activities coupled to mass-spectrometry analysis to investigate the physiological role of the three terminal oxidases under aerobic and microaerobic conditions. Our data revealed that the cbb 3-type oxidase is the major terminal oxidase under aerobic conditions while both cbb 3-type and bd-type oxidases are involved in respiration at low-O2 tensions.

View Article and Find Full Text PDF

In this paper, the hydrogen (H2)-dependent discoloration of azo dye amaranth by Shewanella oneidensis MR-1 was investigated. Experiments with hydrogenase-deficient strains demonstrated that periplasmic [Ni-Fe] hydrogenase (HyaB) and periplasmic [Fe-Fe] hydrogenase (HydA) are both respiratory hydrogenases of dissimilatory azoreduction in S. oneidensis MR-1.

View Article and Find Full Text PDF

The reduction of molecular oxygen to water is catalyzed by complicated membrane-bound metallo-enzymes containing variable numbers of subunits, called cytochrome c oxidases or quinol oxidases. We previously described the cytochrome c oxidase II from the hyperthermophilic bacterium Aquifex aeolicus as a ba(3)-type two-subunit (subunits I and II) enzyme and showed that it is included in a supercomplex involved in the sulfide-oxygen respiration pathway. It belongs to the B-family of the heme-copper oxidases, enzymes that are far less studied than the ones from family A.

View Article and Find Full Text PDF

Hydrogenases are efficient biological catalysts of H(2) oxidation and production. Most of them are inhibited by O(2), and a prerequisite for their use in biotechnological applications under air is to improve their oxygen tolerance. We have previously shown that exchanging the residue at position 74 in the large subunit of the oxygen-sensitive [NiFe] hydrogenase from Desulfovibrio fructosovorans could impact the reaction of the enzyme with O(2) (Dementin, S.

View Article and Find Full Text PDF

Aquifex aeolicus, a hyperthermophilic and microaerophilic bacterium, obtains energy for growth from inorganic compounds alone. It was previously proposed that one of the respiratory pathways in this organism consists of the electron transfer from hydrogen sulfide (H(2)S) to molecular oxygen. H(2)S is oxidized by the sulfide quinone reductase, a membrane-bound flavoenzyme, which reduces the quinone pool.

View Article and Find Full Text PDF

Haem (protohaem IX) analogues are toxic compounds and have been considered for use as antibacterial agents, but the primary mechanism behind their toxicity has not been demonstrated. Using the haem protein catalase in the Gram-positive bacterium Enterococcus faecalis as an experimental system, we show that a variety of haem analogues can be taken up by bacterial cells and incorporated into haem-dependent enzymes. The resulting cofactor-substituted proteins are dysfunctional, generally resulting in arrested cell growth or death.

View Article and Find Full Text PDF

The electrochemistry of membrane-bound [NiFe] hydrogenase I ([NiFe]-hase I) from the hyperthermophilic bacterium Aquifex aeolicus was investigated at gold and graphite electrodes. Direct and mediated H(2) oxidation were proved to be efficient in a temperature range of 25-70 degrees C, describing a potential window for H(2) oxidation similar to that of O(2)-tolerant hydrogenases. Search for enhancement of current densities and enzyme stability was achieved by the use of carbon nanotube coatings.

View Article and Find Full Text PDF

The iron respiratory chain of the acidophilic bacterium Acidithiobacillus ferrooxidans involves various metalloenzymes. Here we demonstrate that the oxygen reduction pathway from ferrous iron (named downhill pathway) is organized as a supercomplex constituted of proteins located in the outer and inner membranes as well as in the periplasm. For the first time, the outer membrane-bound cytochrome c Cyc2 was purified, and we showed that it is responsible for iron oxidation and determined that its redox potential is the highest measured to date for a cytochrome c.

View Article and Find Full Text PDF

We report the modification of gold and graphite electrodes with commercially available carbon nanotubes for immobilization of Desulfovibrio fructosovorans [NiFe] hydrogenase, for hydrogen evolution or consumption. Multiwalled carbon nanotubes, single-walled carbon nanotubes (SWCNs), and amine-modified and carboxyl-functionalized SWCNs were used and compared throughout. Two separate methods were performed: covalent attachment of oriented hydrogenase by controlled architecture of carbon nanotubes at gold electrodes, and adsorption of hydrogenase at carbon-nanotube-coated pyrolytic graphite electrodes.

View Article and Find Full Text PDF