Publications by authors named "Bruger E"

Integration of metabolites into the overall metabolic network of a cell requires careful coordination dependent upon the ultimate usage of the metabolite. Different stoichiometric needs, and thus pathway fluxes, must exist for compounds destined for diverse uses, such as carbon sources, nitrogen sources, or stress-protective agents. Herein, we expand upon our previous work that highlighted the nature of glycine betaine (GB) metabolism in Methylobacteria to examine the utilization of GB-derivative compounds dimethylglycine (DMG) and sarcosine into in different metabolic capacities, including as sole nitrogen and/or carbon sources.

View Article and Find Full Text PDF

Understanding the evolution of novel physiological traits is highly relevant for expanding the characterization and manipulation of biological systems. Acquisition of new traits can be achieved through horizontal gene transfer (HGT). Here, we investigate drivers that promote or deter the maintenance of HGT-driven degeneracy, occurring when processes accomplish identical functions through nonidentical components.

View Article and Find Full Text PDF

For bacteria to thrive they must be well-adapted to their environmental niche, which may involve specialized metabolism, timely adaptation to shifting environments, and/or the ability to mitigate numerous stressors. These attributes are highly dependent on cellular machinery that can sense both the external and intracellular environment. is an extensively studied facultative methylotroph, an organism that can use single-carbon compounds as their sole source of carbon and energy.

View Article and Find Full Text PDF

The potency and indiscriminate nature of formaldehyde reactivity upon biological molecules make it a universal stressor. However, some organisms such as possess means to rapidly and effectively mitigate formaldehyde-induced damage. EfgA is a recently identified formaldehyde sensor predicted to halt translation in response to elevated formaldehyde as a means to protect cells.

View Article and Find Full Text PDF

As selection frequently favors noncooperating defectors in mixed populations with cooperators, mechanisms that promote cooperation stability clearly exist. One potential mechanism is bacterial cell-to-cell communication, quorum sensing (QS), which can allow cooperators to prevent invasion by defectors. However, the impact of QS on widespread maintenance of cooperation in well-mixed conditions has not been experimentally demonstrated over extended evolutionary timescales.

View Article and Find Full Text PDF

A core regulatory pathway that directs developmental transitions and cellular asymmetries in Agrobacterium tumefaciens involves two overlapping, integrated phosphorelays. One of these phosphorelays putatively includes four histidine sensor kinase homologues, DivJ, PleC, PdhS1 and PdhS2, and two response regulators, DivK and PleD. In several different alphaproteobacteria, this pathway influences a conserved downstream phosphorelay that ultimately controls the phosphorylation state of the CtrA master response regulator.

View Article and Find Full Text PDF

Second messengers are intracellular molecules regulated by external stimuli known as first messengers that are used for rapid organismal responses to dynamic environmental changes. Cyclic di-AMP (c-di-AMP) is a relatively newly discovered second messenger implicated in cell wall homeostasis in many pathogenic bacteria. C-di-AMP is synthesized from ATP by diadenylyl cyclases (DAC) and degraded by specific c-di-AMP phosphodiesterases (PDE).

View Article and Find Full Text PDF

Genome sequencing has revolutionized studies using experimental evolution of microbes because it readily provides comprehensive insight into the genetic bases of adaptation. In this perspective we discuss applications of sequencing-based technologies used to study evolution in microbes, including genomic sequencing of isolated evolved clones and mixed evolved populations, and also the use of sequencing methods to follow the fate of introduced variations, whether neutral barcodes or variants introduced by genome editing. Collectively, these sequencing-based approaches have vastly advanced the examination of evolution in the lab, as well as begun to synthesize this work with examination of the genetic bases of adaptation and evolutionary dynamics within natural populations.

View Article and Find Full Text PDF

Quorum sensing (QS) is a form of bacterial chemical communication that regulates cellular phenotypes, including certain cooperative behaviors, in response to environmental and demographic changes. Despite the existence of proposed mechanisms that stabilize QS against defector exploitation, it is unclear if or how QS cooperators can proliferate in some model systems in populations mostly consisting of defectors. We predicted that growth in fragmented subpopulations could allow QS cooperators to invade a QS defector population.

View Article and Find Full Text PDF

The aquatic bacterium and human intestinal pathogen, , senses and responds to a variety of environment-specific cues to regulate biofilm formation. Specifically, the polyamines norspermidine and spermidine enhance and repress biofilm formation, respectively. These effects are relevant for understanding pathogenicity and are mediated through the periplasmic binding protein NspS and the transmembrane bis-(3'-5') cyclic diguanosine monophosphate (c-di-GMP) phosphodiesterase MbaA.

View Article and Find Full Text PDF

is an estuarine bacterium and potent opportunistic human pathogen. It enters the food chain by asymptomatically colonizing a variety of marine organisms, most notably oysters. Expression of the -encoded extracellular polysaccharide, which enhances cell-surface adherence, is regulated by cyclic di-GMP (c-di-GMP) and the activator BrpT.

View Article and Find Full Text PDF

Cooperation is abundant in nature, occurring at all levels of biological complexity. Yet cooperation is continually threatened by subversion from noncooperating cheaters. Previous studies have shown that cooperation can nevertheless be maintained when the benefits that cooperation provides to relatives outweigh the associated costs.

View Article and Find Full Text PDF

is an opportunistic pathogen capable of causing severe disease in patients with cystic fibrosis (CF). Patients may be chronically infected for years, during which the bacterial population evolves in response to unknown forces. Here we analyze the genomic and functional evolution of a infection that was sequentially sampled from a CF patient over 20 years.

View Article and Find Full Text PDF

Staphylococcus aureus is a leading cause of community- and nosocomial-acquired infections, with a propensity for biofilm formation. S. aureus biofilms actively skew the host immune response toward an anti-inflammatory state; however, the biofilm effector molecules and the mechanism(s) of action responsible for this phenomenon remain to be fully defined.

View Article and Find Full Text PDF

Unlabelled: Communication has been suggested as a mechanism to stabilize cooperation. In bacteria, chemical communication, termed quorum sensing (QS), has been hypothesized to fill this role, and extracellular public goods are often induced by QS at high cell densities. Here we show, with the bacterium Vibrio harveyi, that QS provides strong resistance against invasion of a QS defector strain by maximizing the cellular growth rate at low cell densities while achieving maximum productivity through protease upregulation at high cell densities.

View Article and Find Full Text PDF

Unlabelled: In bacteria, the functions of polyamines, small linear polycations, are poorly defined, but these metabolites can influence biofilm formation in several systems. Transposon insertions in an ornithine decarboxylase (odc) gene in Agrobacterium tumefaciens, predicted to direct synthesis of the polyamine putrescine from ornithine, resulted in elevated cellulose. Null mutants for odc grew somewhat slowly in a polyamine-free medium but exhibited increased biofilm formation that was dependent on cellulose production.

View Article and Find Full Text PDF

Microbes are now known to participate in an extensive repertoire of cooperative behaviors such as biofilm formation, production of extracellular public-goods, group motility, and higher-ordered multicellular structures. A fundamental question is how these cooperative tasks are maintained in the face of non-cooperating defector cells. Recently, a number of molecular mechanisms including facultative participation, spatial sorting, and policing have been discovered to stabilize cooperation.

View Article and Find Full Text PDF

There is a compelling need for more effective vaccine adjuvants to augment induction of Ag-specific adaptive immune responses. Recent reports suggested the bacterial second messenger bis-(3'-5')-cyclic-dimeric-guanosine monophosphate (c-di-GMP) acts as an innate immune system modulator. We recently incorporated a Vibrio cholerae diguanylate cyclase into an adenovirus vaccine, fostering production of c-di-GMP as well as proinflammatory responses in mice.

View Article and Find Full Text PDF

Unlabelled: The motile-to-sessile transition is an important lifestyle switch in diverse bacteria and is often regulated by the intracellular second messenger cyclic diguanylate monophosphate (c-di-GMP). In general, high c-di-GMP concentrations promote attachment to surfaces, whereas cells with low levels of signal remain motile. In the plant pathogen Agrobacterium tumefaciens, c-di-GMP controls attachment and biofilm formation via regulation of a unipolar polysaccharide (UPP) adhesin.

View Article and Find Full Text PDF

The second messenger nucleotide cyclic diadenylate monophosphate (c-di-AMP) has been identified in several species of Gram positive bacteria and Chlamydia trachomatis. This molecule has been associated with bacterial cell division, cell wall biosynthesis and phosphate metabolism, and with induction of type I interferon responses by host cells. We demonstrate that B.

View Article and Find Full Text PDF