Publications by authors named "Brug M"

Diabetic retinopathy (DR) is a common complication of diabetes. Approximately 20% of DR patients have diabetic macular edema (DME) characterized by fluid leakage into the retina. There is a genetic component to DR and DME risk, but few replicable loci.

View Article and Find Full Text PDF

Personal grief takes place in a social context, such as the family setting. This study aimed to understand how Namibian caregivers and children/adolescents communicate parental loss, in the context of the HIV/AIDS epidemic. An ethnographic design was used, in which 38 children, adolescents, and their caregivers were interviewed.

View Article and Find Full Text PDF

Damage-associated microglia (DAM) profiles observed in Alzheimer's disease (AD)-related mouse models reflect an activation state that could modulate AD risk or progression. To learn whether human AD microglia (HAM) display a similar profile, we develop a method for purifying cell types from frozen cerebrocortical tissues for RNA-seq analysis, allowing better transcriptome coverage than typical single-nucleus RNA-seq approaches. The HAM profile we observe bears little resemblance to the DAM profile.

View Article and Find Full Text PDF

The aggregation of intracellular tau protein is a major hallmark of Alzheimer's disease (AD). The extent and the stereotypical spread of tau pathology in the AD brain are correlated with cognitive decline during disease progression. Here we present an in-depth analysis of endogenous tau fragmentation in a well-characterized cohort of AD and age-matched control subjects.

View Article and Find Full Text PDF

The recent advent of an "ecosystem" of shared biofluid sample biorepositories and data sets will focus biomarker efforts in Parkinson's disease, boosting the therapeutic development pipeline and enabling translation with real-world impact.

View Article and Find Full Text PDF

Microglia, the CNS-resident immune cells, play important roles in disease, but the spectrum of their possible activation states is not well understood. We derived co-regulated gene modules from transcriptional profiles of CNS myeloid cells of diverse mouse models, including new tauopathy model datasets. Using these modules to interpret single-cell data from an Alzheimer's disease (AD) model, we identified microglial subsets-distinct from previously reported "disease-associated microglia"-expressing interferon-related or proliferation modules.

View Article and Find Full Text PDF

Common variant genome-wide association studies (GWASs) have, to date, identified >24 risk loci for Parkinson's disease (PD). To discover additional loci, we carried out a GWAS comparing 6,476 PD cases with 302,042 controls, followed by a meta-analysis with a recent study of over 13,000 PD cases and 95,000 controls at 9,830 overlapping variants. We then tested 35 loci (P < 1 × 10) in a replication cohort of 5,851 cases and 5,866 controls.

View Article and Find Full Text PDF

The common p.D358A variant (rs2228145) in IL-6R is associated with risk for multiple diseases and with increased levels of soluble IL-6R in the periphery and central nervous system (CNS). Here, we show that the p.

View Article and Find Full Text PDF
Article Synopsis
  • - The hippocampal formation is crucial for memory, navigation, and stress response, and its structural abnormalities are linked to various neuropsychiatric disorders.
  • - A genome-wide association study involving over 33,000 individuals identified six genetic loci related to hippocampal volume, including four that are new discoveries associated with specific genes.
  • - The study also reveals that genetic variants that result in smaller hippocampal volumes correlate with a higher risk of developing Alzheimer's disease, highlighting potential biological pathways related to mental health.
View Article and Find Full Text PDF

Intracranial volume reflects the maximally attained brain size during development, and remains stable with loss of tissue in late life. It is highly heritable, but the underlying genes remain largely undetermined. In a genome-wide association study of 32,438 adults, we discovered five previously unknown loci for intracranial volume and confirmed two known signals.

View Article and Find Full Text PDF

A common approach to understanding neurodegenerative disease is comparing gene expression in diseased versus healthy tissues. We illustrate that expression profiles derived from whole tissue RNA highly reflect the degenerating tissues' altered cellular composition, not necessarily transcriptional regulation. To accurately understand transcriptional changes that accompany neuropathology, we acutely purify neurons, astrocytes and microglia from single adult mouse brains and analyse their transcriptomes by RNA sequencing.

View Article and Find Full Text PDF

The blood-brain barrier (BBB) limits brain uptake of therapeutic antibodies. It is believed that the BBB is disrupted in Alzheimer's disease (AD), potentially increasing drug permeability de facto. Here we compared active versus passive brain uptake of systemically dosed antibodies (anti-transferrin receptor [TfR] bispecific versus control antibody) in mouse models of AD.

View Article and Find Full Text PDF

Combining genetic insights into the pathogenesis of Parkinson's disease (PD) with findings from animal and cellular models of this disorder has advanced our understanding of the pathways that lead to the characteristic degeneration of dopaminergic neurons in the brain's nigrostriatal pathway. This has fueled an increase in candidate compounds designed to modulate these pathways and to alter the processes underlying neuronal death in this disorder. Using mitochondrial quality control and the macroautophagy/lysosomal pathways as examples, we discuss the pipeline from a comprehensive genetic architecture for PD through to clinical trials for drugs targeting pathways linked to neurodegeneration in PD.

View Article and Find Full Text PDF

The highly complex structure of the human brain is strongly shaped by genetic influences. Subcortical brain regions form circuits with cortical areas to coordinate movement, learning, memory and motivation, and altered circuits can lead to abnormal behaviour and disease. To investigate how common genetic variants affect the structure of these brain regions, here we conduct genome-wide association studies of the volumes of seven subcortical regions and the intracranial volume derived from magnetic resonance images of 30,717 individuals from 50 cohorts.

View Article and Find Full Text PDF

Pathogenic mutations in the amyloid precursor protein (APP) gene have been described as causing early onset familial Alzheimer disease (AD). We recently identified a rare APP variant encoding an alanine-to-threonine substitution at residue 673 (A673T) that confers protection against development of AD (Jonsson, T., Atwal, J.

View Article and Find Full Text PDF

TREM and TREM-like receptors are a structurally similar protein family encoded by genes clustered on chromosome 6p21.11. Recent studies have identified a rare coding variant (p.

View Article and Find Full Text PDF

Platelets play a crucial role in the pathogenesis of myocardial infarction (MI) by adhering to the site of a ruptured atherosclerotic plaque. The aim of this study was to screen for differences in the micro RNA (miRNA) content of platelets from patients with myocardial infarction and control patients, to investigate a possible release of miRNAs from activated platelets and to elucidate whether platelet-derived miRNAs could act as paracrine regulators of endothelial cell gene expression. Using RNA-seq, we found 9 differentially expressed miRNAs in patients compared with healthy controls, of which 8 were decreased in patients.

View Article and Find Full Text PDF

Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common cause of familial Parkinson's disease (PD). Although biochemical studies have shown that certain PD mutations confer elevated kinase activity in vitro on LRRK2, there are no methods available to directly monitor LRRK2 kinase activity in vivo. We demonstrate that LRRK2 autophosphorylation on Ser(1292) occurs in vivo and is enhanced by several familial PD mutations including N1437H, R1441G/C, G2019S, and I2020T.

View Article and Find Full Text PDF

Longitudinal research provides insight about the life trajectories of children, the challenges that children experience in different phases of their lives, and the way children cope with these challenges. The article examines the perspectives of 14 orphaned or vulnerable children, initially aged 9 to 12 years (in grades 3 and 4), concerning changes in their difficulties and coping strategies. The children participated in the research in 2003 and again in a follow-up study in 2010 to 2012.

View Article and Find Full Text PDF

The ability to specifically upregulate genes in vivo holds great therapeutic promise. Here we show that inhibition or degradation of natural antisense transcripts (NATs) by single-stranded oligonucleotides or siRNAs can transiently and reversibly upregulate locus-specific gene expression. Brain-derived neurotrophic factor (BDNF) is normally repressed by a conserved noncoding antisense RNA transcript, BDNF-AS.

View Article and Find Full Text PDF

Hyperphosphorylation of the microtubule binding protein Tau is a feature of a number of neurodegenerative diseases, including Alzheimer's disease. Tau is hyperphosphorylated in the hippocampus of dab1-null mice in a strain-dependent manner; however, it has not been clear if the Tau phosphorylation phenotype is a secondary effect of the morbidity of these mutants. The dab1 gene encodes a docking protein that is required for normal brain lamination and dendritogenesis as part of the Reelin signaling pathway.

View Article and Find Full Text PDF

Point mutations in LRRK2 cause autosomal dominant Parkinson's disease. Despite extensive efforts to determine the mechanism of cell death in patients with LRRK2 mutations, the aetiology of LRRK2 PD is not well understood. To examine possible alterations in gene expression linked to the presence of LRRK2 mutations, we carried out a case versus control analysis of global gene expression in three systems: fibroblasts isolated from LRRK2 mutation carriers and healthy, non-mutation carrying controls; brain tissue from G2019S mutation carriers and controls; and HEK293 inducible LRRK2 wild type and mutant cell lines.

View Article and Find Full Text PDF

Progressive supranuclear palsy (PSP) is a movement disorder with prominent tau neuropathology. Brain diseases with abnormal tau deposits are called tauopathies, the most common of which is Alzheimer's disease. Environmental causes of tauopathies include repetitive head trauma associated with some sports.

View Article and Find Full Text PDF

Methylation at CpG sites is a critical epigenetic modification in mammals. Altered DNA methylation has been suggested to be a central mechanism in development, some disease processes and cellular senescence. Quantifying the extent and identity of epigenetic changes in the aging process is therefore potentially important for understanding longevity and age-related diseases.

View Article and Find Full Text PDF

The Reelin ligand regulates a Dab1-dependent signaling pathway required for brain lamination and normal dendritogenesis, but the specific mechanisms underlying these actions remain unclear. We find that Stk25, a modifier of Reelin-Dab1 signaling, regulates Golgi morphology and neuronal polarization as part of an LKB1-Stk25-Golgi matrix protein 130 (GM130) signaling pathway. Overexpression of Stk25 induces Golgi condensation and multiple axons, both of which are rescued by Reelin treatment.

View Article and Find Full Text PDF