Publications by authors named "Bruecker C"

Background-Physiological helical flow in the ascending aorta has been well documented in the last two decades, accompanied by discussions on possible physiological benefits of such axial swirl. Recent 4D-MRI studies on healthy volunteers have found indications of early generation of helical flow, early in the systole and close to the valve plane. Objectives-Firstly, the aim of the study is to investigate the hypothesis of premature swirl existence in the ventricular outflow tract leading to helical flow in the valve plane, and second to investigate the possible impact of two different mechanical valve designs on the preservation of this early helical flow and its subsequent hemodynamic consequences.

View Article and Find Full Text PDF

This work describes a novel mechanism of laminar flow control of straight and backward swept wings with a comb-like leading edge (LE) device. It is inspired by the LE comb on owl feathers and the special design of its barbs, resembling a cascade of complex 3D-curved thin finlets. The details of the geometry of the barbs from an owl feather were used to design a generic model of the comb for experimental and numerical flow studies with the comb attached to the LE of a flat plate.

View Article and Find Full Text PDF

Aquatic animals have developed effective strategies to reduce their body drag over a long period of time. In this work, the influence of the scales of fish on the laminar-to-turbulent transition in the boundary layer is investigated. Arrays of biomimetic fish scales in typical overlapping arrangements are placed on a flat plate in a low-turbulence laminar water channel.

View Article and Find Full Text PDF

Various marine animals possess the ability to track their preys and navigate dark aquatic environments using hydrodynamic sensing of the surrounding flow. In the present study, a deep-learning model is applied to a biomimetic sensor for underwater position detection of a wake-generating body. The sensor is composed of a bundle of spatially-distributed optical fibers that act as artificial seal-like whiskers and interact with the body's wake in the form of time-variant (bending) deflections.

View Article and Find Full Text PDF

Pinnipeds like seals and sea lions use their whiskers to hunt their prey in dark and turbid situations. There is currently no theoretical model or hypothesis to explain the interaction between whiskers and hydrodynamic fish trails. The current study, however, provides a theoretical and experimental insight into the mechanism behind the detection of the Strouhal frequency from a Von-Karman vortex street, similar to that of the inverted hydrodynamic fish trail.

View Article and Find Full Text PDF

The surface topology of the scale pattern from the European sea bass () was measured using a digital microscope and geometrically reconstructed using computer assisted design modelling. Numerical flow simulations and experiments with a physical model of the surface pattern in a flow channel mimic the flow over the fish surface with a laminar boundary layer. The scale array produces regular rows of alternating, streamwise low-speed and high-speed streaks inside the boundary layer close to the surface, with maximum velocity difference of approximately 9%.

View Article and Find Full Text PDF

An experimental study is reported which investigates the wall shear stress (WSS) distribution in a transparent model of the human aorta comparing an St. Jude Medical (SJM) Regent bileaflet mechanical heart valve (BMHV) with the Lapeyre-Triflo FURTIVA trileaflet mechanical heart valve (TMHV) in physiological pulsatile flow. Elastic microcantilever structures, calibrated as micropillar WSS sensors by microparticle-image-velocimetry measurements, are applied to the wall along the ascending aorta (AAo).

View Article and Find Full Text PDF

During a dive, peregrine falcons (Falco peregrinus) can reach a velocity of up to 320 km h. Our computational fluid dynamics simulations show that the forces that pull on the wings of a diving peregrine can reach up to three times the falcon's body mass at a stoop velocity of 80 m s (288 km h). Since the bones of the wings and the shoulder girdle of a diving peregrine falcon experience large mechanical forces, we investigated these bones.

View Article and Find Full Text PDF

Snapping shrimps use a special shaped claw to generate a cavitating high speed water jet. Cavitation formed in this way, may be used for hunting/stunning prey and communication. The present work is a novel computational effort to provide insight on the mechanisms of cavitation formation during the claw closure.

View Article and Find Full Text PDF

This work describes the development and use of pappus-like structures as sensitive sensors to detect minute air-flow motions. We made such sensors from pappi taken from nature-grown seed, whose filiform hairs' length-scale is suitable for the study of large-scale turbulent convection flows. The stem with the pappus on top is fixated on an elastic membrane on the wall and tilts under wind-load proportional to the velocity magnitude in direction of the wind, similar as the biological sensory hairs found in spiders, however herein the sensory hair has multiple filiform protrusions at the tip.

View Article and Find Full Text PDF

During the flight of birds, it is often possible to notice that some of the primaries and covert feathers on the upper side of the wing pop-up under critical flight conditions, such as the landing approach or when stalking their prey (see Fig. 1) . It is often conjectured that the feathers pop up plays an aerodynamic role by limiting the spread of flow separation .

View Article and Find Full Text PDF

The measurement of near-wall flow in a plane close to the wall is achieved using the wave-guiding feature of transparent flexible micro-pillars which are attached in a 2D array to a surface and bend with the flow. Optical detection of bending from below the surface and application of auto-correlation methods provide mean and fluctuating part of the components of the wall-parallel velocity components. In addition, the wall-normal fluid motion is determined from spatial gradients in the array.

View Article and Find Full Text PDF

Objective: To appraise the value of FDG-PET and bone scintigraphy using SPECT in the primary diagnosis and follow-up of patients with chronic osteomyelitis of the mandible (COM).

Methods: In a prospective study the pattern of tracer uptake was investigated using 2 diagnostic methods in 42 patients. Results were compared with histology and radiographs as well as clinical and laboratory parameters.

View Article and Find Full Text PDF