Publications by authors named "Brudvig J"

Enzyme replacement therapy (ERT) is the only approved disease-modifying treatment modality for Pompe disease, a rare, inherited metabolic disorder caused by a deficiency in the acid -glucosidase (GAA) enzyme that catabolizes lysosomal glycogen. First-generation recombinant human GAA (rhGAA) ERT (alglucosidase alfa) can slow the progressive muscle degeneration characteristic of the disease. Still, most patients experience diminished efficacy over time, possibly because of poor uptake into target tissues.

View Article and Find Full Text PDF

Background: CLN3 disease (also known as CLN3 Batten disease or Juvenile Neuronal Ceroid Lipofuscinosis) is a rare pediatric neurodegenerative disorder caused by biallelic mutations in CLN3. While extensive efforts have been undertaken to understand CLN3 disease etiology, pathology, and clinical progression, little is known about the impact of CLN3 disease on parents and caregivers. Here, we investigated CLN3 disease progression, clinical care, and family experiences using semi-structured interviews with 39 parents of individuals with CLN3 disease.

View Article and Find Full Text PDF

Background: Hypercalcemia has been associated with hypergastrinemia in humans. Hypergastrinemia could be responsible for gastrointestinal (GI) signs in dogs with primary hyperparathyroidism (PHPT).

Hypothesis/objectives: (a) Determine whether hypergastrinemia occurs in dogs with PHPT, (b) assess for potential correlations among ionized calcium (iCa), parathyroid hormone (PTH), and serum gastrin concentrations, and (c) determine whether gastrin concentrations decrease after management of PHPT.

View Article and Find Full Text PDF

Lysosomal storage disorders (LSDs) are a genetically and clinically diverse group of diseases characterized by lysosomal dysfunction. Batten disease is a family of severe LSDs primarily impacting the central nervous system. Here we show that AF38469, a small molecule inhibitor of sortilin, improves lysosomal and glial pathology across multiple LSD models.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to establish a reference interval (RI) for serum gastrin levels in dogs after a 12-hour fasting period, addressing challenges with the traditional 24-hour fasting approach.
  • Using data from 55 healthy adult dogs, the RI was determined to be 15.1-78.9 ng/L, with confidence intervals for the lower and upper limits being 14.0-22.9 and 68.3-83.0 ng/L, respectively.
  • The research found no significant correlations between serum gastrin levels and factors like age, weight, sex, or total calcium concentration, highlighting a need for further studies on how hypercalcemia might impact gastrin levels in dogs.
View Article and Find Full Text PDF

Mouse models of CLN3 Batten disease, a rare lysosomal storage disorder with no cure, have improved our understanding of CLN3 biology and therapeutics through their ease of use and a consistent display of cellular pathology. However, the translatability of murine models is limited by disparities in anatomy, body size, life span and inconsistent subtle behavior deficits that can be difficult to detect in CLN3 mutant mouse models, thereby limiting their use in preclinical studies. Here, we present a longitudinal characterization of a novel miniswine model of CLN3 disease that recapitulates the most common human pathogenic variant, an exon 7-8 deletion (CLN3Δex7/8).

View Article and Find Full Text PDF

CLN3 disease, caused by biallelic mutations in the gene, is a rare pediatric neurodegenerative disease that has no cure or disease modifying treatment. The development of effective treatments has been hindered by a lack of etiological knowledge, but gene replacement has emerged as a promising therapeutic platform for such disorders. Here, we utilize a mouse model of CLN3 disease to test the safety and efficacy of a cerebrospinal fluid-delivered AAV9 gene therapy with a study design optimized for translatability.

View Article and Find Full Text PDF

Introduction: CLN3 Batten disease is a rare pediatric neurodegenerative lysosomal disorder caused by biallelic disease-associated variants in Despite decades of intense research, specific biofluid biomarkers of disease status have not been reported, hindering clinical development of therapies. Thus, we sought to determine whether individuals with CLN3 Batten disease have elevated levels of specific metabolites in blood.

Methods: We performed an exhaustive metabolomic screen using serum samples from a novel minipig model of CLN3 Batten disease and validated findings in pig serum and CSF and mouse serum.

View Article and Find Full Text PDF

CLN2 Batten disease is a lysosomal disorder in which pathogenic variants in CLN2 lead to reduced activity in the enzyme tripeptidyl peptidase 1. The disease typically manifests around 2 to 4 years of age with developmental delay, ataxia, seizures, inability to speak and walk, and fatality between 6 and 12 years of age. Multiple Cln2 mouse models exist to better understand the etiology of the disease; however, these models are unable to adequately recapitulate the disease due to differences in anatomy and physiology, limiting their utility for therapeutic testing.

View Article and Find Full Text PDF

Batten disease is unique among lysosomal storage disorders for the early and profound manifestation in the central nervous system, but little is known regarding potential neuron-specific roles for the disease-associated proteins. We demonstrate substantial overlap in the protein interactomes of three transmembrane Batten proteins (CLN3, CLN6, and CLN8), and that their absence leads to synaptic depletion of key partners (i.e.

View Article and Find Full Text PDF

is a leading cause of gastroenteritis that has been causally linked with development of the autoimmune peripheral neuropathy Guillain Barré Syndrome (GBS). Previously, we showed that isolates from human enteritis patients induced Type1/17-cytokine dependent colitis in interleukin-10 (IL-10) mice, while isolates from GBS patients colonized these mice without colitis but instead induced autoantibodies that cross-reacted with the sialylated oligosaccharide motifs on the LOS of GBS-associated and the peripheral nerve gangliosides. We show here that infection of IL-10 mice with the GBS but not the colitis isolate led to sciatic nerve inflammation and abnormal gait and hind limb movements, with character and timing consistent with this syndrome in humans.

View Article and Find Full Text PDF

is an important cause of bacterial gastroenteritis worldwide and is linked to Guillain-Barré syndrome (GBS), a debilitating postinfectious polyneuropathy. The immunopathogenesis of GBS involves the generation of antibodies that are cross reactive to lipooligosaccharide and structurally similar peripheral nerve gangliosides. Both the infecting strain and host factors contribute to GBS development.

View Article and Find Full Text PDF

CLN7 Batten disease, also known as variant late infantile neuronal ceroid lipofuscinosis type 7 (vLINCL7), is an ultra-rare form of Batten disease that presents early in life with severe neurological symptoms, including visual deficits, motor problems, and frequent seizures. There is high unmet need for disease-modifying therapies, as no existing treatment can halt progression or prevent premature death. In this issue of the JCI, Chen et al.

View Article and Find Full Text PDF

Ependymal cells (ECs) line the ventricular surfaces of the mammalian central nervous system (CNS) and their development is indispensable to structural integrity and functions of the CNS. We previously reported that EC-specific genetic deletion of the myristoylated alanine-rich protein kinase C substrate (Marcks) disrupts barrier functions and elevates oxidative stress and lipid droplet accumulation in ECs causing precocious cellular aging. However, little is known regarding the mechanisms that mediate these changes in ECs.

View Article and Find Full Text PDF

Background: Commonly known as Batten disease, the neuronal ceroid lipofuscinoses (NCLs) are a genetically heterogeneous group of rare pediatric lysosomal storage disorders characterized by the intracellular accumulation of autofluorescent material (known as lipofuscin), progressive neurodegeneration, and neurological symptoms. In 2002, a disease-causing NCL mutation in the CLN6 gene was identified (c.214G > T) in the Costa Rican population, but the frequency of this mutation among local Batten disease patients remains incompletely characterized, as do clinical and demographic attributes for this rare patient population.

View Article and Find Full Text PDF

SEC24 is mainly involved in cargo sorting during COPII vesicle assembly. There are four SEC24 paralogs (A-D) in vertebrates, which are classified into two subgroups (SEC24A/B and SEC24C/D). Pathological mutations in SEC24D cause osteogenesis imperfecta with craniofacial dysplasia in humans.

View Article and Find Full Text PDF

Batten disease is a family of rare, lysosomal disorders caused by mutations in one of at least 13 genes, which encode a diverse set of lysosomal and extralysosomal proteins. Despite decades of research, the development of effective therapies has remained intractable. But now, the field is experiencing rapid, unprecedented progress on multiple fronts.

View Article and Find Full Text PDF

Background: Desoxycorticosterone pivalate (DOCP) is a commonly used mineralocorticoid replacement for dogs with primary hypoadrenocorticism (HA), but manufacturer-recommended dosing protocols can be cost-prohibitive. Recent reports also have raised concerns that label dose protocols could be excessive.

Objective: To investigate the relative efficacy and adverse effects of 2 DOCP dosages in dogs with primary glucocorticoid and mineralocorticoid deficient HA.

View Article and Find Full Text PDF

Acid alpha-glucosidase (GAA) is a lysosomal glycogen-catabolizing enzyme, the deficiency of which leads to Pompe disease. Pompe disease can be treated with systemic recombinant human GAA (rhGAA) enzyme replacement therapy (ERT), but the current standard of care exhibits poor uptake in skeletal muscles, limiting its clinical efficacy. Furthermore, it is unclear how the specific cellular processing steps of GAA after delivery to lysosomes impact its efficacy.

View Article and Find Full Text PDF

Batten disease is a family of rare, fatal, neuropediatric diseases presenting with memory/learning decline, blindness, and loss of motor function. Recently, we reported the use of an AAV9-mediated gene therapy that prevents disease progression in a mouse model of CLN6-Batten disease ( ), restoring lifespans in treated animals. Despite the success of our viral-mediated gene therapy, the dosing strategy was optimized for delivery to the brain parenchyma and may limit the therapeutic potential to other disease-relevant tissues, such as the eye.

View Article and Find Full Text PDF

CLN8 disease is a rare form of neuronal ceroid lipofuscinosis caused by biallelic mutations in the CLN8 gene, which encodes a transmembrane endoplasmic reticulum protein involved in trafficking of lysosomal enzymes. CLN8 disease patients present with myoclonus, tonic-clonic seizures, and progressive declines in cognitive and motor function, with many cases resulting in premature death early in life. There are currently no treatments that can cure the disease or substantially slow disease progression.

View Article and Find Full Text PDF

While research has accelerated the development of new treatments for pediatric neurodegenerative disorders, the ability to demonstrate the long-term efficacy of these therapies has been hindered by the lack of convincing, noninvasive methods for tracking disease progression both in animal models and in human clinical trials. Here, we unveil a new translational platform for tracking disease progression in an animal model of a pediatric neurodegenerative disorder, CLN6-Batten disease. Instead of looking at a handful of parameters or a single "needle in a haystack", we embrace the idea that disease progression, in mice and patients alike, is a diverse phenomenon best characterized by a combination of relevant biomarkers.

View Article and Find Full Text PDF

Through the process of neuronal differentiation, newly born neurons change from simple, spherical cells to complex, sprawling cells with many highly branched processes. One of the first stages in this process is neurite initiation, wherein cytoskeletal modifications facilitate membrane protrusion and extension from the cell body. Hundreds of actin modulators and microtubule-binding proteins are known to be involved in this process, but relatively little is known about how upstream regulators bring these complex networks together at discrete locations to produce neurites.

View Article and Find Full Text PDF