Publications by authors named "Bruder C"

Voice preferences are an integral part of interpersonal interactions and shape how people connect with each other. While a large number of studies have investigated the mechanisms behind (speaking) voice attractiveness, very little research was dedicated to other types of vocalizations. In this Registered Report, we proposed to investigate voice preferences with an integrative approach.

View Article and Find Full Text PDF

One of the central tasks in many-body physics is the determination of phase diagrams. However, mapping out a phase diagram generally requires a great deal of human intuition and understanding. To automate this process, one can frame it as a classification task.

View Article and Find Full Text PDF

Both music and language are found in all known human societies, yet no studies have compared similarities and differences between song, speech, and instrumental music on a global scale. In this Registered Report, we analyzed two global datasets: (i) 300 annotated audio recordings representing matched sets of traditional songs, recited lyrics, conversational speech, and instrumental melodies from our 75 coauthors speaking 55 languages; and (ii) 418 previously published adult-directed song and speech recordings from 209 individuals speaking 16 languages. Of our six preregistered predictions, five were strongly supported: Relative to speech, songs use (i) higher pitch, (ii) slower temporal rate, and (iii) more stable pitches, while both songs and speech used similar (iv) pitch interval size and (v) timbral brightness.

View Article and Find Full Text PDF

Why do we prefer some singers to others? We investigated how much singing voice preferences can be traced back to objective features of the stimuli. To do so, we asked participants to rate short excerpts of singing performances in terms of how much they liked them as well as in terms of 10 perceptual attributes (e.g.

View Article and Find Full Text PDF

Classical singers train intensively for many years to achieve a high level of vocal control and specific sound characteristics. However, the actual span of singers' activities often includes venues other than opera halls and requires performing in styles outside their strict training (e.g.

View Article and Find Full Text PDF

We theoretically describe macroscopic quantum synchronization effects occurring in a network of all-to-all coupled quantum limit-cycle oscillators. The coupling causes a transition to synchronization as indicated by the presence of global phase coherence. We demonstrate that the microscopic quantum properties of the oscillators qualitatively shape the synchronization behavior in a macroscopically large network.

View Article and Find Full Text PDF

We experimentally investigate the stochastic phase dynamics of planar Josephson junctions (JJs) and superconducting quantum interference devices (SQUIDs) defined in epitaxial InAs/Al heterostructures, and characterized by a large ratio of Josephson energy to charging energy. We observe a crossover from a regime of macroscopic quantum tunneling to one of phase diffusion as a function of temperature, where the transition temperature T^{*} is gate-tunable. The switching probability distributions are shown to be consistent with a small shunt capacitance and moderate damping, resulting in a switching current which is a small fraction of the critical current.

View Article and Find Full Text PDF

Recent experiments have suggested that superconductivity in metallic nanowires can be suppressed by the application of modest gate voltages. The source of this gate action has been debated and either attributed to an electric-field effect or to small leakage currents. Here we show that the suppression of superconductivity in titanium nitride nanowires on silicon substrates does not depend on the presence or absence of an electric field at the nanowire, but requires a current of high-energy electrons.

View Article and Find Full Text PDF

Superconductivity is commonly destroyed by a magnetic field due to orbital or Zeeman-induced pair breaking. Surprisingly, the spin-valley locking in a two-dimensional superconductor with spin-orbit interaction makes the superconducting state resilient to large magnetic fields. We investigate the spectral properties of such an Ising superconductor in a magnetic field taking into account disorder.

View Article and Find Full Text PDF

Objective: The aim of this study was to estimate the changes in the palate area after rapid maxillary expansion (RME) with the Hyrax expander in growing subjects, using cone beam computed tomography (CBCT).

Methods: Fourteen patients (9 girls and 5 boys; mean age = 11.7 ± 2.

View Article and Find Full Text PDF

In order to detect automation failures in a timely manner, operators are required to monitor automated systems efficiently. The present study analysed eye movements to predict whether or not participants could detect an automation failure. Eye movements were recorded whilst 101 participants were monitoring an automated system where automation failures occurred at irregular intervals.

View Article and Find Full Text PDF

We study synchronization in a two-node network built out of the smallest possible self-sustained oscillator: a spin-1 oscillator. We first demonstrate that phase locking between the quantum oscillators can be achieved, even for limit cycles that cannot be synchronized to an external semiclassical signal. Building upon the analytical description of the system, we then clarify the relation between quantum synchronization and the generation of entanglement.

View Article and Find Full Text PDF

We investigate the minimal Hilbert-space dimension for a system to be synchronized. We first show that qubits cannot be synchronized due to the lack of a limit cycle. Moving to larger spin values, we demonstrate that a single spin 1 can be phase locked to a weak external signal of similar frequency and exhibits all the standard features of the theory of synchronization.

View Article and Find Full Text PDF

Lung cancer is the commonest cancer worldwide. Mortality and incidence rates are traditionally used to assess cancer burden and as public health indicators. However, these metrics are difficult to interpret at an individual level.

View Article and Find Full Text PDF

Coupling two or more self-oscillating systems may stabilize their zero-amplitude rest state, therefore quenching their oscillation. This phenomenon is termed "amplitude death." Well known and studied in classical self-oscillators, amplitude death was only recently investigated in quantum self-oscillators [Ishibashi and Kanamoto, Phys.

View Article and Find Full Text PDF

The development of solid-state quantum technologies requires the understanding of quantum measurements in interacting, nonisolated quantum systems. In general, a permanent coupling of detectors to a quantum system leads to memory effects that have to be taken into account in interpreting the measurement results. We analyze a generic setup of two detectors coupled to a quantum system and derive a compact formula in the weak-measurement limit that interpolates between an instantaneous (text-book type) and almost continuous-detector dynamics-dependent-measurement.

View Article and Find Full Text PDF

Classically, the tendency towards spontaneous synchronization is strongest if the natural frequencies of the self-oscillators are as close as possible. We show that this wisdom fails in the deep quantum regime, where the uncertainty of amplitude narrows down to the level of single quanta. Under these circumstances identical self-oscillators cannot synchronize and detuning their frequencies can actually help synchronization.

View Article and Find Full Text PDF

The Dicke model and the superradiance of two-level systems in a radiation field have many applications. Recently, a Dicke quantum phase transition has been realized with a Bose-Einstein condensate in a cavity. We numerically solve the many-body Schrödinger equation and study correlations in the ground state of interacting bosons in a cavity as a function of the strength of a driving laser.

View Article and Find Full Text PDF

We study the synchronization of a Van der Pol self-oscillator with Kerr anharmonicity to an external drive. We demonstrate that the anharmonic, discrete energy spectrum of the quantum oscillator leads to multiple resonances in both phase locking and frequency entrainment not present in the corresponding classical system. Strong driving close to these resonances leads to nonclassical steady-state Wigner distributions.

View Article and Find Full Text PDF

It has been proposed that adding disorder to a topologically trivial mercury telluride/cadmium telluride (HgTe/CdTe) quantum well can induce a transition to a topologically nontrivial state. The resulting state was termed topological Anderson insulator and was found in computer simulations of the Bernevig-Hughes-Zhang model. Here, we show that the topological Anderson insulator is a more universal phenomenon and also appears in the Kane-Mele model of topological insulators on a honeycomb lattice.

View Article and Find Full Text PDF

Gyrencephalic species develop folds in the cerebral cortex in a stereotypic manner, but the genetic mechanisms underlying this patterning process are unknown. We present a large-scale transcriptomic analysis of individual germinal layers in the developing cortex of the gyrencephalic ferret, comparing between regions prospective of fold and fissure. We find unique transcriptional signatures in each germinal compartment, where thousands of genes are differentially expressed between regions, including ~80% of genes mutated in human cortical malformations.

View Article and Find Full Text PDF

Unlabelled: Increasing automation necessitates operators monitoring appropriately (OMA) and raises the question of how to identify them in future selections. A normative model was developed providing criteria for the identification of OMA. According to this model, the monitoring process comprises distinct monitoring phases (orientation, anticipation, detection and recheck) in which attention should be focused on relevant areas.

View Article and Find Full Text PDF

Synchronization is a universal phenomenon that is important both in fundamental studies and in technical applications. Here we investigate synchronization in the simplest quantum-mechanical scenario possible, i.e.

View Article and Find Full Text PDF

In vitro, ribavirin acts as a lethal mutagen in Hantaan virus (HTNV)-infected Vero E6 cells, resulting in an increased mutation load and viral population extinction. In this study, we asked whether ribavirin treatment in the lethal, suckling mouse model of HTNV infection would act similarly. The HTNV genomic RNA (vRNA) copy number and infectious virus were measured in lungs of untreated and ribavirin-treated mice.

View Article and Find Full Text PDF

A long-standing problem in quantum mesoscopic physics is which operator order corresponds to noise expressions like , where I(ω) is the measured current at frequency ω. Symmetrized order describes a classical measurement while nonsymmetrized order corresponds to a quantum detector, e.g.

View Article and Find Full Text PDF