Adult (3 month) mice with cardiac-specific overexpression of adenylyl cyclase (AC) type VIII (TG) adapt to an increased cAMP-induced cardiac workload (~30% increases in heart rate, ejection fraction and cardiac output) for up to a year without signs of heart failure or excessive mortality. Here, we show classical cardiac hypertrophy markers were absent in TG, and that total left ventricular (LV) mass was not increased: a reduced LV cavity volume in TG was encased by thicker LV walls harboring an increased number of small cardiac myocytes, and a network of small interstitial proliferative non-cardiac myocytes compared to wild type (WT) littermates; Protein synthesis, proteosome activity, and autophagy were enhanced in TG vs WT, and Nrf-2, Hsp90α, and ACC2 protein levels were increased. Despite increased energy demands in vivo LV ATP and phosphocreatine levels in TG did not differ from WT.
View Article and Find Full Text PDFSpontaneous AP (action potential) firing of sinoatrial nodal cells (SANC) is critically dependent on protein kinase A (PKA) and Ca/calmodulin-dependent protein kinase II (CaMKII)-dependent protein phosphorylation, which are required for the generation of spontaneous, diastolic local Ca releases (LCRs). Although phosphoprotein phosphatases (PP) regulate protein phosphorylation, the expression level of PPs and phosphatase inhibitors in SANC and the impact of phosphatase inhibition on the spontaneous LCRs and other players of the oscillatory coupled-clock system is unknown. Here, we show that rabbit SANC express both PP1, PP2A, and endogenous PP inhibitors I-1 (PPI-1), dopamine and cyclic adenosine 3',5'-monophosphate (cAMP)-regulated phosphoprotein (DARPP-32), kinase C-enhanced PP1 inhibitor (KEPI).
View Article and Find Full Text PDFFront Physiol
September 2021
Ca and transitions occurring throughout action potential (AP) cycles in sinoatrial nodal (SAN) cells are cues that (1) not only regulate activation states of molecules operating within criticality (Ca domain) and limit-cycle ( domain) mechanisms of a coupled-clock system that underlies SAN cell automaticity, (2) but are also regulated by the activation states of the clock molecules they regulate. In other terms, these cues are both causes and effects of clock molecular activation (recursion). Recently, we demonstrated that Ca and transitions during AP cycles in single SAN cells isolated from mice, guinea pigs, rabbits, and humans are self-similar (obey a power law) and are also self-similar to -species AP firing intervals (APFIs) of these cells , to heart rate , and to body mass.
View Article and Find Full Text PDFObjectives: The purpose of this study was to discover regulatory universal mechanisms of normal automaticity in sinoatrial nodal (SAN) pacemaker cells that are self-similar across species.
Background: Translation of knowledge of SAN automaticity gleaned from animal studies to human dysrhythmias (e.g.
Action potential (AP) firing rate and rhythm of sinoatrial nodal cells (SANC) are controlled by synergy between intracellular rhythmic local Ca releases (LCRs) ("Ca clock") and sarcolemmal electrogenic mechanisms ("membrane clock"). However, some SANC do not fire APs (dormant SANC). Prior studies have shown that β-adrenoceptor stimulation can restore AP firing in these cells.
View Article and Find Full Text PDFRationale: ZO-1 (Zona occludens 1), encoded by the tight junction protein 1 () gene, is a regulator of paracellular permeability in epithelia and endothelia. ZO-1 interacts with the actin cytoskeleton, gap, and adherens junction proteins and localizes to intercalated discs in cardiomyocytes. However, the contribution of ZO-1 to cardiac physiology remains poorly defined.
View Article and Find Full Text PDFCurrent understanding of how cardiac pacemaker cells operate is based mainly on studies in isolated single sinoatrial node cells (SANC), specifically those that rhythmically fire action potentials similar to the in vivo behavior of the intact sinoatrial node. However, only a small fraction of SANC exhibit rhythmic firing after isolation. Other SANC behaviors have not been studied.
View Article and Find Full Text PDFThe spontaneous rhythmic action potentials generated by the sinoatrial node (SAN), the primary pacemaker in the heart, dictate the regular and optimal cardiac contractions that pump blood around the body. Although the heart rate of humans is substantially slower than that of smaller experimental animals, current perspectives on the biophysical mechanisms underlying the automaticity of sinoatrial nodal pacemaker cells (SANCs) have been gleaned largely from studies of animal hearts. Using human SANCs, we demonstrated that spontaneous rhythmic local Ca releases generated by a Ca clock were coupled to electrogenic surface membrane molecules (the M clock) to trigger rhythmic action potentials, and that Ca-cAMP-protein kinase A (PKA) signaling regulated clock coupling.
View Article and Find Full Text PDFAMPK is a conserved serine/threonine kinase whose activity maintains cellular energy homeostasis. Eukaryotic AMPK exists as αβγ complexes, whose regulatory γ subunit confers energy sensor function by binding adenine nucleotides. Humans bearing activating mutations in the γ2 subunit exhibit a phenotype including unexplained slowing of heart rate (bradycardia).
View Article and Find Full Text PDFCardiac pacemaker cells, including cells of the sinoatrial node, are heterogeneous in size, morphology, and electrophysiological characteristics. The exact extent to which these cells differ electrophysiologically is unclear yet is critical to understanding their functioning. We examined major ionic currents in individual intercaval pacemaker cells (IPCs) sampled from the paracristal, intercaval region (including the sinoatrial node) that were spontaneously beating after enzymatic isolation from rabbit hearts.
View Article and Find Full Text PDFConstitutive Ca(2+)/calmodulin (CaM)-activation of adenylyl cyclases (ACs) types 1 and 8 in sinoatrial nodal cells (SANC) generates cAMP within lipid-raft-rich microdomains to initiate cAMP-protein kinase A (PKA) signaling, that regulates basal state rhythmic action potential firing of these cells. Mounting evidence in other cell types points to a balance between Ca(2+)-activated counteracting enzymes, ACs and phosphodiesterases (PDEs) within these cells. We hypothesized that the expression and activity of Ca(2+)/CaM-activated PDE Type 1A is higher in SANC than in other cardiac cell types.
View Article and Find Full Text PDFcAMP-PKA protein kinase is a key nodal signaling pathway that regulates a wide range of heart pacemaker cell functions. These functions are predicted to be involved in regulation of spontaneous action potential (AP) generation of these cells. Here we investigate if the kinetics and stoichiometry of increase in PKA activity match the increase in AP firing rate in response to β-adrenergic receptor (β-AR) stimulation or phosphodiesterase (PDE) inhibition, that alters the AP firing rate of heart sinoatrial pacemaker cells.
View Article and Find Full Text PDFRecent evidence indicates that the spontaneous action potential (AP) of isolated sinoatrial node cells (SANCs) is regulated by a system of stochastic mechanisms embodied within two clocks: ryanodine receptors of the "Ca(2+) clock" within the sarcoplasmic reticulum, spontaneously activate during diastole and discharge local Ca(2+) releases (LCRs) beneath the cell surface membrane; clock crosstalk occurs as LCRs activate an inward Na(+)/Ca(2+) exchanger current (INCX), which together with If and decay of K(+) channels prompts the "M clock," the ensemble of sarcolemmal-electrogenic molecules, to generate APs. Prolongation of the average LCR period accompanies prolongation of the average AP beating interval (BI). Moreover, the prolongation of the average AP BI accompanies increased AP BI variability.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
June 2014
A recurring theme of a host of gerontologic studies conducted in either experimental animals or in humans is related to documenting the functional decline with age. We hypothesize that elevated circulating levels of a powerful antiangiogenic peptide, endostatin, represent one of the potent systemic causes for multiorgan microvascular rarefaction and functional decline due to fibrosis. It is possible that during the life span of an organism there is an accumulation of dormant transformed cells producing antiangiogenic substances (endostatin) that maintain the dormancy of such scattered malignant cells.
View Article and Find Full Text PDFBackground: A reduction of complexity of heart beating interval variability that is associated with an increased morbidity and mortality in cardiovascular disease states is thought to derive from the balance of sympathetic and parasympathetic neural impulses to the heart. However, rhythmic clocklike behavior intrinsic to pacemaker cells in the sinoatrial node (SAN) drives their beating, even in the absence of autonomic neural input.
Objective: To test how this rhythmic clocklike behavior intrinsic to pacemaker cells interacts with autonomic impulses to the heart beating interval variability in vivo.
Beneficial clinical bradycardic effects of ivabradine (IVA) have been interpreted solely on the basis of If inhibition, because IVA specifically inhibits If in sinoatrial nodal pacemaker cells (SANC). However, it has been recently hypothesized that SANC normal automaticity is regulated by crosstalk between an "M clock," the ensemble of surface membrane ion channels, and a "Ca(2+) clock," the sarcoplasmic reticulum (SR). We tested the hypothesis that crosstalk between the two clocks regulates SANC automaticity, and that indirect suppression of the Ca(2+) clock further contributes to IVA-induced bradycardia.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
June 2013
The spontaneous action potential (AP) firing rate of sinoatrial node cells (SANCs) involves high-throughput signaling via Ca(2+)-calmodulin activated adenylyl cyclases (AC), cAMP-mediated protein kinase A (PKA), and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII)-dependent phosphorylation of SR Ca(2+) cycling and surface membrane ion channel proteins. When the throughput of this signaling increases, e.g.
View Article and Find Full Text PDFUnlabelled: : Ca(2+)-activated basal adenylate cyclase (AC) in rabbit sinoatrial node cells (SANC) guarantees, via basal cAMP/PKA-calmodulin/CaMKII-dependent protein phosphorylation, the occurrence of rhythmic, sarcoplasmic-reticulum generated, sub-membrane Ca(2+) releases that prompt rhythmic, spontaneous action potentials (APs). This high-throughput signaling consumes ATP.
Aims: We have previously demonstrated that basal AC-cAMP/PKA signaling directly, and Ca(2+) indirectly, regulate mitochondrial ATP production.
Freshly isolated adult rabbit sinoatrial node cells (f-SANC) are an excellent model for studies of autonomic signaling, but are not amenable to genetic manipulation. We have developed and characterized a stable cultured rabbit SANC (c-SANC) model that is suitable for genetic manipulation to probe mechanisms of spontaneous action potential (AP) firing. After 48 h in culture, c-SANC generate stable, rhythmic APs at 34±0.
View Article and Find Full Text PDFRecent clinical trials have shown that ivabradine (IVA), a drug that inhibits the funny current (I(f)) in isolated sinoatrial nodal cells (SANC), decreases heart rate and reduces morbidity and mortality in patients with cardiovascular diseases. While IVA inhibits I(f), this effect has been reported at essentially unphysiological voltages, i.e.
View Article and Find Full Text PDFBackground: Mitochondria dynamically buffer cytosolic Ca(2+) in cardiac ventricular cells and this affects the Ca(2+) load of the sarcoplasmic reticulum (SR). In sinoatrial-node cells (SANC) the SR generates periodic local, subsarcolemmal Ca(2+) releases (LCRs) that depend upon the SR load and are involved in SANC automaticity: LCRs activate an inward Na(+)-Ca(2+) exchange current to accelerate the diastolic depolarization, prompting the ensemble of surface membrane ion channels to generate the next action potential (AP).
Objective: To determine if mitochondrial Ca(2+) (Ca(2+) (m)), cytosolic Ca(2+) (Ca(2+) (c))-SR-Ca(2+) crosstalk occurs in single rabbit SANC, and how this may relate to SANC normal automaticity.
Whether intracellular Ca(2+) regulates sinoatrial node cell (SANC) action potential (AP) firing rate on a beat-to-beat basis is controversial. To directly test the hypothesis of beat-to-beat intracellular Ca(2+) regulation of the rate and rhythm of SANC we loaded single isolated SANC with a caged Ca(2+) buffer, NP-EGTA, and simultaneously recorded membrane potential and intracellular Ca(2+). Prior to introduction of the caged Ca(2+) buffer, spontaneous local Ca(2+) releases (LCRs) during diastolic depolarization were tightly coupled to rhythmic APs (r²=0.
View Article and Find Full Text PDFRecent perspectives on sinoatrial nodal cell (SANC)(*) function indicate that spontaneous sarcoplasmic reticulum (SR) Ca(2+) cycling, i.e. an intracellular "Ca(2+) clock," driven by cAMP-mediated, PKA-dependent phosphorylation, interacts with an ensemble of surface membrane electrogenic molecules ("surface membrane clock") to drive SANC normal automaticity.
View Article and Find Full Text PDF