For more than three decades, major efforts in sampling and analyzing tree diversity in South America have focused almost exclusively on trees with stems of at least 10 and 2.5 cm diameter, showing highest species diversity in the wetter western and northern Amazon forests. By contrast, little attention has been paid to patterns and drivers of diversity in the largest canopy and emergent trees, which is surprising given these have dominant ecological functions.
View Article and Find Full Text PDFGlob Chang Biol
September 2018
Sustained drought and concomitant high temperature may reduce photosynthesis and cause tree mortality. Possible causes of reduced photosynthesis include stomatal closure and biochemical inhibition, but their relative roles are unknown in Amazon trees during strong drought events. We assessed the effects of the recent (2015) strong El Niño drought on leaf-level photosynthesis of Central Amazon trees via these two mechanisms.
View Article and Find Full Text PDFWe studied the tree-regeneration patterns in three distinct agricultural settlements in the Eastern Amazon to test the influence of land-use mosaics. The following questions are addressed: are the floristic structure and composition of regenerating trees affected by the various land-use types applied in the agricultural settlements? Do tree-regeneration patterns respond similarly to distinct land-use mosaics? Is there a relationship between tree regeneration and soil characteristics among the land-use types? The regeneration was inventoried at 45 sampling points in each settlement. At each sampling point, fourteen soil variables were analyzed.
View Article and Find Full Text PDF