Electrolyte is very critical to the performance of the high-voltage lithium (Li) metal battery (LMB), which is one of the most attractive candidates for the next-generation high-density energy-storage systems. Electrolyte formulation and structure determine the physical properties of the electrolytes and their interfacial chemistries on the electrode surfaces. Localized high-concentration electrolytes (LHCEs) outperform state-of-the-art carbonate electrolytes in many aspects in LMBs due to their unique solvation structures.
View Article and Find Full Text PDFHigh-energy-density batteries with a LiCoO (LCO) cathode are of significant importance to the energy-storage market, especially for portable electronics. However, their development is greatly limited by the inferior performance under high voltages and challenging temperatures. Here, highly stable lithium (Li) metal batteries with LCO cathode, through the design of in situ formed, stable electrode/electrolyte interphases on both the Li anode and the LCO cathode, with an advanced electrolyte, are reported.
View Article and Find Full Text PDFFunctional electrolyte is the key to stabilize the highly reductive lithium (Li) metal anode and the high-voltage cathode for long-life, high-energy-density rechargeable Li metal batteries (LMBs). However, fundamental mechanisms on the interactions between reactive electrodes and electrolytes are still not well understood. Recently localized high-concentration electrolytes (LHCEs) are emerging as a promising electrolyte design strategy for LMBs.
View Article and Find Full Text PDFWood and plant fibers have been studied as natural sorbent materials for treating aquatic oil spills; however, the effectiveness of these materials is limited by their tendency to absorb water as well as oil. Chemical pretreatment of cotton fibers with fatty acids was examined as a means of enhancing the performance of cotton as a sorbent for crude oil. A raw cotton fiber was chemically modified with C18 fatty acid by simple leaving group chemistry.
View Article and Find Full Text PDFThe autocatalytic redox interaction between aqueous Fe(II) and Fe(III)-(oxyhydr)oxide minerals such as goethite and hematite leads to rapid recrystallization marked, in principle, by an atom exchange (AE) front, according to bulk iron isotopic tracer studies. However, direct evidence for this AE front has been elusive given the analytical challenges of mass-resolved imaging at the nanoscale on individual crystallites. We report successful isolation and characterization of the AE front in goethite microrods by 3D atom probe tomography (APT).
View Article and Find Full Text PDFUnderstanding the atomically precise arrangement of atoms at epitaxial interfaces is important for emerging technologies such as quantum materials that have function and performance dictated by bonds and defects that are energetically active on the micro-electronvolt scale. A combination of atomistic modeling and dislocation theory analysis describes both primary and secondary dislocation networks at the metamorphic Al/Si (111) interface, which is experimentally validated by atomic resolution scanning transmission electron microscopy. The electron microscopy images show primary misfit dislocations for the majority of the strain relief and evidence of a secondary structure allowing for complete relaxation of the Al-Si misfit strain.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) exhibit exceptional properties and are widely investigated because of their structural and functional versatility relevant to catalysis, separations, and sensing applications. However, their commercial or large-scale application is often limited by their powder forms which make integration into devices challenging. Here, we report the production of MOF-thermoplastic polymer composites in well-defined and customizable forms and with complex internal structural features accessed via a standard three-dimensional (3D) printer.
View Article and Find Full Text PDFModels for long-term glass alteration are required to satisfy performance predictions of vitrified nuclear waste in various disposal scenarios. Durability parameters are usually extracted from short-term laboratory tests, and sometimes checked with long-term natural experiments on glasses, termed analogues. In this paper, a unique potential ancient glass analogue from Sweden is discussed.
View Article and Find Full Text PDFIn situ imaging and elemental analysis of boehmite (AlOOH) particles in water is realized using the System for Analysis at the Liquid Vacuum Interface (SALVI) and Scanning Electron Microscopy (SEM). This paper describes the method and key steps in integrating the vacuum compatible SAVLI to SEM and obtaining secondary electron (SE) images of particles in liquid in high vacuum. Energy dispersive x-ray spectroscopy (EDX) is used to obtain elemental analysis of particles in liquid and control samples including deionized (DI) water only and an empty channel as well.
View Article and Find Full Text PDFFe(II)-rich clay minerals found in subsurface redox transition zones (RTZs) can serve as important sources of electron equivalents limiting the transport of redox-active contaminants. While most laboratory reactivity studies are based on reduced model clays, the reactivity of naturally reduced field samples remains poorly explored. Characterization of the clay size fraction of a fine-grained unit from the RTZ interface at the Hanford site, Washington, including mineralogy, crystal chemistry, and Fe(II)/(III) content, indicates that ferruginous montmorillonite is the dominant mineralogical component.
View Article and Find Full Text PDFPhys Chem Chem Phys
November 2016
Heterogeneous ice nucleation is a physical chemistry process of critical relevance to a range of topics in the fundamental and applied sciences and technologies. Heterogeneous ice nucleation remains insufficiently understood, partially due to the lack of experimental methods capable of obtaining in situ microscopic details of ice formation over nucleating substrates or particles. We present microscopic observations of ice nucleation events on kaolinite particles at the nanoscale and demonstrate the capability of direct tracking and micro-spectroscopic characterization of individual ice nucleating particles (INPs) in an authentic atmospheric sample.
View Article and Find Full Text PDFMolecular templating and self-assembly are fundamental mechanisms for controlling the morphology of biominerals, while in synthetic two-dimensional layered materials similar levels of control over materials structure can be achieved through the epitaxial relationship with the substrate. In this study these two concepts are combined to provide an approach for the nucleation and growth of three-dimensional ordered mesophases on solid surfaces. A combined experimental and theoretical study revealed how atomic ordering of the substrate controls the structure of surfactant template and the orientation and morphology of the epitaxially grown inorganic material.
View Article and Find Full Text PDFWetlands mitigate the migration of groundwater contaminants through a series of biogeochemical gradients that enhance multiple contaminant-binding processes. The hypothesis of this study was that wetland plant roots contribute organic carbon and release O2 within the rhizosphere (plant-impact soil zone) that promote the formation of Fe(III)-(oxyhydr)oxides. In turn, these Fe(III)-(oxyhydr)oxides stabilize organic matter that together contribute to contaminant immobilization.
View Article and Find Full Text PDFWe report results of measurements of isotopic ratios obtained with atom probe tomography on U3O8 reference materials certified for their isotopic abundances of uranium. The results show good agreement with the certified values. High backgrounds due to tails from adjacent peaks complicate the measurement of the integrated peak areas as well as the fact that only oxides of uranium appear in the spectrum, the most intense of which is doubly charged.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2015
Nanoscale porous coordination polymers were synthesized using simple wet chemical method. The effect of various polymer surfactants on colloidal stability and shape selectivity was investigated. Our results suggest that the nanoparticles exhibited significantly improved adsorption kinetics compared to bulk crystals due to decreased diffusion path lengths and preferred crystal plane interaction.
View Article and Find Full Text PDFZeolite catalysis is determined by a combination of pore architecture and Brønsted acidity. As Brønsted acid sites are formed by the substitution of AlO4 for SiO4 tetrahedra, it is of utmost importance to have information on the number as well as the location and neighbouring sites of framework aluminium. Unfortunately, such detailed information has not yet been obtained, mainly due to the lack of suitable characterization methods.
View Article and Find Full Text PDFA novel [Mg2(μ-Cl)2](2+) cation complex, which is highly active for reversible Mg electrodeposition, was identified for the first time in this work. This complex was found to be present in electrolytes formulated in dimethoxyethane (DME) through dehalodimerization of non-nucleophilic MgCl2 by reacting with either Mg salts (such as Mg(TFSI)2, TFSI = bis(trifluoromethane)sulfonylimide) or Lewis acid salts (such as AlEtCl2 or AlCl3). The molecular structure of the cation complex was characterized by single crystal X-ray diffraction, Raman spectroscopy and NMR.
View Article and Find Full Text PDFYarrowia lipolytica is an oleaginous ascomycete yeast that accumulates large amounts of lipids and has potential as a biofuel producing organism. Despite a growing scientific literature focused on lipid production by Y. lipolytica, there remain significant knowledge gaps regarding the key biological processes involved.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
June 2015
This study focused on determining the presence of organic phases in the siliceous components of rigid marine composites ("glass" sponge spicules), and thereby clarifying how such composites dissipate significant mechanical energy. Through the use of imaging by helium ion microscopy in the examination of the spicules, the organic phase that is present between the layers of hydrated silica was also detected within the silica cylinders of the composite, indicating the existence therein of a network, scaffolding, or other pattern that has not yet been determined. It was concluded that the presence of an interpenetrating network of some kind, and tenacious fibrillar interfaces are responsible for large energy dissipation in these siliceous composites by viscoelastic and other mechanical deformation processes.
View Article and Find Full Text PDFWe report tip-enhanced Raman imaging experiments in which information on sample topography and local electric fields is simultaneously obtained using an all-optical detection scheme. We demonstrate how a Raman-active 4,4'-dimercaptostilbene (DMS)-coated gold tip of an atomic force microscope can be used to simultaneously map the topography and image the electric fields localized at nanometric (20 and 5 nm wide) slits lithographically etched in silver, all using optical signals. Bimodal imaging is feasible by virtue of the frequency-resolved optical response of the functionalized metal probe.
View Article and Find Full Text PDFA hierarchically structured nitrogen-doped porous carbon is prepared from a nitrogen-containing isoreticular metal-organic framework (IRMOF-3) using a self-sacrificial templating method. IRMOF-3 itself provides the carbon and nitrogen content as well as the porous structure. For high carbonization temperatures (950 °C), the carbonized MOF required no further purification steps, thus eliminating the need for solvents or acid.
View Article and Find Full Text PDFPorous carbon nanofiber (CNF)-supported tin-antimony (SnSb) alloys are synthesized and applied as a sodium-ion battery anode. The chemistry and morphology of the solid electrolyte interphase (SEI) film and its correlation with the electrode performance are studied. The addition of fluoroethylene carbonate (FEC) in the electrolyte significantly reduces electrolyte decomposition and creates a very thin and uniform SEI layer on the cycled electrode surface, which an promote the kinetics of Na-ion migration/transportation, leading to excellent electrochemical performance.
View Article and Find Full Text PDFWe report a catalytic templating method to synthesize well-controlled three-dimensional carbon nano-architectures. Depending on graphene oxide content, the morphology can be systematically tuned from layered composites to 3D hollow structures to microporous materials. The composites with high surface area and high porosity induce a significant enhancement to its capacitance at high current density.
View Article and Find Full Text PDFUnder anoxic conditions, soluble pertechnetate (⁹⁹TcO₄⁻) can be reduced to less soluble TcO₂·nH₂O, but the oxide is highly susceptible to reoxidation. Here we investigate an alternative strategy for remediation of Tc-contaminated groundwater whereby sequestration as Tc sulfide is favored by sulfidic conditions stimulated by nano zerovalent iron (nZVI). nZVI was pre-exposed to increasing concentrations of sulfide in simulated Hanford groundwater for 24 h to mimic the onset of aquifer biotic sulfate reduction.
View Article and Find Full Text PDF