The purpose of this work is to compare predictive performance of neural networks trained using the relatively novel technique of training single hidden layer feedforward neural networks (SFNN), called Extreme Learning Machine (ELM), with commonly used backpropagation-trained recurrent neural networks (RNN) as applied to the task of financial market prediction. Evaluated on a set of large capitalisation stocks on the Australian market, specifically the components of the ASX20, ELM-trained SFNNs showed superior performance over RNNs for individual stock price prediction. While this conclusion of efficacy holds generally, long short-term memory (LSTM) RNNs were found to outperform for a small subset of stocks.
View Article and Find Full Text PDFBackground: Assessment of the performance of Intensive Care Units (ICU) is of vital importance for an effective healthcare system. Such assessment ensures that the limited resources of the healthcare system are allocated where they are most needed. Severity scoring systems are employed for this purpose and improving these systems is a continuing area of research which has focused on the use of more complex techniques and new variables.
View Article and Find Full Text PDFBMC Health Serv Res
February 2019
Background: The objective of this paper is to utilise a clinical costing system to investigate differences in the patient journey, defined as the sequence and timing of contacts with the Gold Coast Hospital and Health Services (GCHHS), for four dialysis patient groups defined based on age and gender. It is hypothesised that frequency of contact and form of contact will differ based on both gender and age.
Methods: Data were provided for 393 patients discharged from the GCHHS facility with dialysis treatment between the 1st of January 2015 and the 31st of December 2016.
Background: Various tasks within health care processes are repetitive and time-consuming, requiring personnel who could be better utilized elsewhere. The task of assigning clinical urgency categories to internal patient referrals is one such case of a time-consuming process, which may be amenable to automation through the application of text mining and natural language processing (NLP) techniques.
Objective: This article aims to trial and evaluate a pilot study for the first component of the task-determining reasons for referrals.