Publications by authors named "Bruce S Levison"

-alpha glycerylphosphorylcholine (GPC), a nutritional supplement, has been demonstrated to improve neurological function. However, a new study suggests that GPC supplementation increases incident stroke risk thus its potential adverse effects warrant further investigation. Here we show that GPC promotes atherosclerosis in hyperlipidemic mice.

View Article and Find Full Text PDF

Background Trimethylamine--oxide (TMAO) is a small molecule derived from the metabolism of dietary nutrients by gut microbes and contributes to cardiovascular disease. Plasma TMAO increases following consumption of red meat. This metabolic change is thought to be partly because of the expansion of gut microbes able to use nutrients abundant in red meat.

View Article and Find Full Text PDF

Apolipoprotein A-I (apoA-I) is the major protein constituent of high-density lipoprotein (HDL) and a target of myeloperoxidase-dependent oxidation in the artery wall. In atherosclerotic lesions, apoA-I exhibits marked oxidative modifications at multiple sites, including Trp Site-specific mutagenesis studies have suggested, but have not conclusively shown, that oxidative modification of Trp of apoA-I impairs many atheroprotective properties of this lipoprotein. Herein, we used genetic code expansion technology with an engineered tryptophanyl tRNA-synthetase (Trp-RS):suppressor tRNA pair to insert the noncanonical amino acid 5-hydroxytryptophan (5-OHTrp) at position 72 in recombinant human apoA-I and confirmed site-specific incorporation utilizing MS.

View Article and Find Full Text PDF

Aims: Trimethyllysine (TML) serves as a nutrient precursor of the gut microbiota-derived metabolite trimethylamine N-oxide (TMAO) and is associated with incident cardiovascular (CV) events in stable subjects. We examined the relationship between plasma TML levels and incident CV events in patients presenting with acute coronary syndromes (ACS).

Methods And Results: Plasma levels of TML were quantified in two independent cohorts using mass spectrometry, and its relationship with CV events was investigated.

View Article and Find Full Text PDF

Aims: Carnitine and choline are major nutrient precursors for gut microbiota-dependent generation of the atherogenic metabolite, trimethylamine N-oxide (TMAO). We performed randomized-controlled dietary intervention studies to explore the impact of chronic dietary patterns on TMAO levels, metabolism and renal excretion.

Methods And Results: Volunteers (N = 113) were enrolled in a randomized 2-arm (high- or low-saturated fat) crossover design study.

View Article and Find Full Text PDF

Background: l-Carnitine, an abundant nutrient in red meat, accelerates atherosclerosis in mice via gut microbiota-dependent formation of trimethylamine (TMA) and trimethylamine N-oxide (TMAO) via a multistep pathway involving an atherogenic intermediate, γ-butyrobetaine (γBB). The contribution of γBB in gut microbiota-dependent l-carnitine metabolism in humans is unknown.

Methods: Omnivores and vegans/vegetarians ingested deuterium-labeled l-carnitine (d3-l-carnitine) or γBB (d9-γBB), and both plasma metabolites and fecal polymicrobial transformations were examined at baseline, following oral antibiotics, or following chronic (≥2 months) l-carnitine supplementation.

View Article and Find Full Text PDF

The protocols for solid-phase extraction (SPE) of six microcystins (MCs; MC-LR, MC-RR, MC-LA, MC-LF, MC-LW, and MC-YR) from mouse urine, mouse plasma, and human serum are reported. The quantification of those MCs in biofluids was achieved using HPLC-orbitrap-MS in selected-ion monitoring (SIM) mode, and MCs in urine samples were also quantified by ultra-HPLC-triple quadrupole-tandem mass spectrometry (UHPLC-QqQ-MS/MS) in multiple reaction monitoring (MRM) mode. Under optimal conditions, the extraction recoveries of MCs from samples spiked at two different concentrations (1 μg/L and 10 μg/L) ranged from 90.

View Article and Find Full Text PDF

Trimethylamine N-oxide (TMAO) is a gut microbiota-derived metabolite that enhances both platelet responsiveness and in vivo thrombosis potential in animal models, and TMAO plasma levels predict incident atherothrombotic event risks in human clinical studies. TMAO is formed by gut microbe-dependent metabolism of trimethylamine (TMA) moiety-containing nutrients, which are abundant in a Western diet. Here, using a mechanism-based inhibitor approach targeting a major microbial TMA-generating enzyme pair, CutC and CutD (CutC/D), we developed inhibitors that are potent, time-dependent, and irreversible and that do not affect commensal viability.

View Article and Find Full Text PDF

Background: Intestinal microbiota have been found to be linked to cardiovascular disease via conversion of the dietary compounds choline and carnitine to the atherogenic metabolite TMAO (trimethylamine-N-oxide). Specifically, a vegan diet was associated with decreased plasma TMAO levels and nearly absent TMAO production on carnitine challenge.

Methods And Results: We performed a double-blind randomized controlled pilot study in which 20 male metabolic syndrome patients were randomized to single lean vegan-donor or autologous fecal microbiota transplantation.

View Article and Find Full Text PDF

Recent studies reveal 2-aminoadipic acid (2-AAA) is both elevated in subjects at risk for diabetes and mechanistically linked to glucose homeostasis. Prior studies also suggest enrichment of protein-bound 2-AAA as an oxidative post-translational modification of lysyl residues in tissues associated with degenerative diseases of aging. While in vitro studies suggest redox active transition metals or myeloperoxidase (MPO) generated hypochlorous acid (HOCl) may produce protein-bound 2-AAA, the mechanism(s) responsible for generation of 2-AAA during inflammatory diseases are unknown.

View Article and Find Full Text PDF

Trimethylamine (TMA) N-oxide (TMAO), a gut-microbiota-dependent metabolite, both enhances atherosclerosis in animal models and is associated with cardiovascular risks in clinical studies. Here, we investigate the impact of targeted inhibition of the first step in TMAO generation, commensal microbial TMA production, on diet-induced atherosclerosis. A structural analog of choline, 3,3-dimethyl-1-butanol (DMB), is shown to non-lethally inhibit TMA formation from cultured microbes, to inhibit distinct microbial TMA lyases, and to both inhibit TMA production from physiologic polymicrobial cultures (e.

View Article and Find Full Text PDF

Paraoxonase 1 (PON1) is a high density lipoprotein (HDL)-associated protein with atherosclerosis-protective and systemic anti-oxidant functions. We recently showed that PON1, myeloperoxidase, and HDL bind to one another in vivo forming a functional ternary complex (Huang, Y., Wu, Z.

View Article and Find Full Text PDF

Rationale: Trimethylamine-N-oxide (TMAO), a gut microbial-dependent metabolite of dietary choline, phosphatidylcholine (lecithin), and l-carnitine, is elevated in chronic kidney diseases (CKD) and associated with coronary artery disease pathogenesis.

Objective: To both investigate the clinical prognostic value of TMAO in subjects with versus without CKD, and test the hypothesis that TMAO plays a direct contributory role in the development and progression of renal dysfunction.

Methods And Results: We first examined the relationship between fasting plasma TMAO and all-cause mortality over 5-year follow-up in 521 stable subjects with CKD (estimated glomerular filtration rate, <60 mL/min per 1.

View Article and Find Full Text PDF

Recent studies indicate both clinical and mechanistic links between atherosclerotic heart disease and intestinal microbial metabolism of certain dietary nutrients producing trimethylamine N-oxide (TMAO). Here we test the hypothesis that gut microbial transplantation can transmit choline diet-induced TMAO production and atherosclerosis susceptibility. First, a strong association was noted between atherosclerotic plaque and plasma TMAO levels in a mouse diversity panel (n = 22 strains, r = 0.

View Article and Find Full Text PDF

L-carnitine, a nutrient in red meat, was recently reported to accelerate atherosclerosis via a metaorganismal pathway involving gut microbial trimethylamine (TMA) formation and host hepatic conversion into trimethylamine-N-oxide (TMAO). Herein, we show that following L-carnitine ingestion, γ-butyrobetaine (γBB) is produced as an intermediary metabolite by gut microbes at a site anatomically proximal to and at a rate ∼1,000-fold higher than the formation of TMA. Moreover, we show that γBB is the major gut microbial metabolite formed from dietary L-carnitine in mice, is converted into TMA and TMAO in a gut microbiota-dependent manner (like dietary L-carnitine), and accelerates atherosclerosis.

View Article and Find Full Text PDF

Trimethylamine-N-oxide (TMAO) levels in blood predict future risk for major adverse cardiac events including myocardial infarction, stroke, and death. Thus, the rapid determination of circulating TMAO concentration is of clinical interest. Here we report a method to measure TMAO in biological matrices by stable isotope dilution liquid chromatography tandem mass spectrometry (LC/MS/MS) with lower and upper limits of quantification of 0.

View Article and Find Full Text PDF

Aims: Recent metabolomics and animal model studies show trimethylamine-N-oxide (TMAO), an intestinal microbiota-dependent metabolite formed from dietary trimethylamine-containing nutrients such as phosphatidylcholine (PC), choline, and carnitine, is linked to coronary artery disease pathogenesis. Our aim was to examine the prognostic value of systemic choline and betaine levels in stable cardiac patients.

Methods And Results: We examined the relationship between fasting plasma choline and betaine levels and risk of major adverse cardiac events (MACE = death, myocardial infraction, stroke) in relation to TMAO over 3 years of follow-up in 3903 sequential stable subjects undergoing elective diagnostic coronary angiography.

View Article and Find Full Text PDF

Recent studies have indicated that high-density lipoproteins (HDLs) and their major structural protein, apolipoprotein A1 (apoA1), recovered from human atheroma are dysfunctional and are extensively oxidized by myeloperoxidase (MPO). In vitro oxidation of either apoA1 or HDL particles by MPO impairs their cholesterol acceptor function. Here, using phage display affinity maturation, we developed a high-affinity monoclonal antibody that specifically recognizes both apoA1 and HDL that have been modified by the MPO-H2O2-Cl(-) system.

View Article and Find Full Text PDF

Myeloperoxidase (MPO) and paraoxonase 1 (PON1) are high-density lipoprotein-associated (HDL-associated) proteins mechanistically linked to inflammation, oxidant stress, and atherosclerosis. MPO is a source of ROS during inflammation and can oxidize apolipoprotein A1 (APOA1) of HDL, impairing its atheroprotective functions. In contrast, PON1 fosters systemic antioxidant effects and promotes some of the atheroprotective properties attributed to HDL.

View Article and Find Full Text PDF

Background: Recent studies in animals have shown a mechanistic link between intestinal microbial metabolism of the choline moiety in dietary phosphatidylcholine (lecithin) and coronary artery disease through the production of a proatherosclerotic metabolite, trimethylamine-N-oxide (TMAO). We investigated the relationship among intestinal microbiota-dependent metabolism of dietary phosphatidylcholine, TMAO levels, and adverse cardiovascular events in humans.

Methods: We quantified plasma and urinary levels of TMAO and plasma choline and betaine levels by means of liquid chromatography and online tandem mass spectrometry after a phosphatidylcholine challenge (ingestion of two hard-boiled eggs and deuterium [d9]-labeled phosphatidylcholine) in healthy participants before and after the suppression of intestinal microbiota with oral broad-spectrum antibiotics.

View Article and Find Full Text PDF

Intestinal microbiota metabolism of choline and phosphatidylcholine produces trimethylamine (TMA), which is further metabolized to a proatherogenic species, trimethylamine-N-oxide (TMAO). We demonstrate here that metabolism by intestinal microbiota of dietary L-carnitine, a trimethylamine abundant in red meat, also produces TMAO and accelerates atherosclerosis in mice. Omnivorous human subjects produced more TMAO than did vegans or vegetarians following ingestion of L-carnitine through a microbiota-dependent mechanism.

View Article and Find Full Text PDF

Oxidized fatty acids formed via lipid peroxidation are implicated in pathological processes such as inflammation and atherosclerosis. A number of methods may be used to detect specific oxidized fatty acids containing a single or multiple combinations of epoxide, hydroxyl, ketone, and hydroperoxide moieties on varying carbon chain lengths from C8 up to C30. Some of these methods are nonspecific and their use in biological systems is fraught with difficulty.

View Article and Find Full Text PDF

Metabolomics studies hold promise for the discovery of pathways linked to disease processes. Cardiovascular disease (CVD) represents the leading cause of death and morbidity worldwide. Here we used a metabolomics approach to generate unbiased small-molecule metabolic profiles in plasma that predict risk for CVD.

View Article and Find Full Text PDF

Aims: To investigate the association of arginine methylation with myocardial function and prognosis in chronic systolic heart failure patients.

Methods And Results: Asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA), as well as N-mono-methylarginine (MMA) and methyl-lysine, were simultaneously measured by tandem mass spectrometry in 132 patients with chronic systolic heart failure with echocardiographic evaluation and follow-up. Increasing ADMA and SDMA levels were associated with elevated natriuretic peptide levels (both P < 0.

View Article and Find Full Text PDF

Rationale: As the sole nitrogen donor in nitric oxide (NO) synthesis and key intermediate in the urea cycle, arginine and its metabolic pathways are integrally linked to cellular respiration, metabolism, and inflammation.

Objectives: We hypothesized that arginine (Arg) bioavailability would be associated with airflow abnormalities and inflammation in subjects with asthma, and would be informative for asthma severity.

Methods: Arg bioavailability was assessed in subjects with severe and nonsevere asthma and healthy control subjects by determination of plasma Arg relative to its metabolic products, ornithine and citrulline, and relative to methylarginine inhibitors of NO synthases, and by serum arginase activity.

View Article and Find Full Text PDF