There have been a number of recent studies reporting high-spin d(4,6) complexes with three- and four-coordinate geometry, which exhibit roughly trigonal symmetry. These include complexes of Fe(II) with general formula L(3)FeX, where L = thioether or dialkylphosphine donors of a tripodal chelating ligand and X is a monodentate ligand on the C(3) axis. In these systems, there is unquenched orbital angular momentum, which has significant consequences on the electronic/magnetic properties of the complexes, including magnetic susceptibility, EPR spectra, and magnetic Mössbauer spectra.
View Article and Find Full Text PDFSelective 20S proteasomal inhibition and apoptosis induction were observed when several lines of cancer cells were treated with a series of copper complexes described as [Cu(L(I))Cl] (1), [Cu(L(I))OAc] (2), and [Cu(HL(I))(L(I))]OAc (3), where HL(I) is the ligand 2,4-diiodo-6-((pyridine-2-ylmethylamino)methyl)phenol. These complexes were synthesized, characterized by means of ESI spectrometry, infrared, UV-visible and EPR spectroscopies, and X-ray diffraction when possible. After full characterization species 1-3 were evaluated for their ability to function as proteasome inhibitors and apoptosis inducers in C4-2B and PC-3 human prostate cancer cells and MCF-10A normal cells.
View Article and Find Full Text PDFTransition-metal dithiolene complexes have interesting structures and fascinating redox properties, making them promising candidates for a number of applications, including superconductors, photonic devices, chemical sensors, and catalysts. However, not enough is known about the molecular electronic origins of these properties. Multinuclear solid-state NMR spectroscopy and first-principles calculations are used to examine the molecular and electronic structures of the redox series [Pt(tfd)(2)](z-) (tfd = S(2)C(2)(CF(3))(2); z = 0, 1, 2; the anionic species have [NEt(4)](+) countercations).
View Article and Find Full Text PDFThe electronic absorption spectrum of fac-[Mn(CO)(3)(phen)imH](+), fac-1 in CH(2)Cl(2) is characterized by a strong absorption band at 378 nm (epsilon(max) = 3200 mol(-1) L cm(-1)). On the basis of quantum mechanical calculations, the visible absorption band has been assigned to ligand-to-ligand charge-transfer (LLCT, im-->phen) and metal-to-ligand charge-transfer (MLCT, Mn-->phen) charge transfer transition. When fac-1 in CH(2)Cl(2) is irradiated with 350 nm continuous light, the absorption features are gradually shifted to represent those of the meridional complex mer-[Mn(CO)(3)(phen)imH](+), mer-1 (lambda(max) = 556 nm).
View Article and Find Full Text PDFThe reaction of P(CH2OH)3 with methyl anthranilate NH2C6H4-2-CO2Me produced the ligand precursor P(CH2NHC6H4-2-CO2Me)3 (1). The reaction of 1 with [Y{N(SiMe3)2}3] produced hexadentate yttrium complex [Y{P(CH2NC6H4-2-CO2Me)3}] (2), in which the metal centre is coordinated by three amido donors and the three carbonyl oxygen atoms of the ester groups. The 31P{1H} NMR spectrum features 1J Y,P=15 Hz, and DFT calculations demonstrate that through-space interaction between the minor lobe of the phosphine lone pair and the yttrium centre allows a large Fermi contact contribution to this spin coupling constant.
View Article and Find Full Text PDFThe stabilization of a bivalent oxidation state in cobalt complexes of phenolate-based asymmetric tridentate ligands with iodo and bromo substituents is studied. The complexes [CoII(LIA)2].2CH3OH (1) and [CoII(LBrA)2].
View Article and Find Full Text PDFA weakly coupled heterometallic [CuFe] complex has been prepared in which the metal centers are coordinated to a new electroactive ligand. The spin-diverse system delivers distinct ground states upon application of selective redox potentials. Ligand oxidation fosters radical generation, and the initial ground state associated with a weakly coupled [CuFe] core switches to a ground state associated with the [Fe-radical] coupling; the Cu(II) ion remains uncoupled.
View Article and Find Full Text PDFIn order to understand and predict structural, redox, magnetic, and optical properties of more complex and potentially mesogenic electroactive compounds such as [Co(III)(L(t-BuLC))2]ClO4 (1), five archetypical complexes of general formula [Co(III)(L(RA))2]ClO4, where R = H (2), tert-butyl (3), methoxy (4), nitro (5), and chloro (6), were obtained and studied by means of several spectrometric, spectroscopic, and electrochemical methods. The complexes 2, 4, and 6 were characterized by single-crystal X-ray diffraction, and show the metal center in an approximate D2h symmetry. Experimental results support the fact that the electron donating or withdrawing nature of the phenolate-appended substituents changes dramatically the redox and spectroscopic properties of these compounds.
View Article and Find Full Text PDFA new asymmetric pentadentate ligand was designed to impose low symmetry to trivalent ions. Five-coordinate Fe3+ and Ga3+ complexes were investigated by crystallographic, electrochemical, and electron paramagnetic resonance methods showing enhanced redox reversibility. Calculations were performed to account for the observed trends.
View Article and Find Full Text PDFSpecies 1-6 are [M(III)(L)2]ClO4 complexes formed with the PhO--CH=N-CH2-Py imines, (L(I))- and (L(tBuI))-, and PhO--CH2-NH-CH2-Py amines, (L(A))- and (L(tBuA))-, in which PhO- is a phenolate ring and Py is a pyridine ring and the prefix tBu indicates the presence of tertiary butyl groups occupying the positions 4 and 6 of the phenol ring. Monometallic species with d5 high-spin iron (1, 2, 3, 4) and d10 gallium (5, 6) were synthesized and characterized to assess the influence of the ligand rigidity and the presence of tertiary butyl-substituted phenol rings on their steric, electronic, and redox behavior. Characterization by elemental analysis, mass spectrometry, IR, UV-visible, and EPR spectroscopies, and electrochemistry has been performed, and complexes [FeIII(L(tBuI))2]ClO4 (2), [FeIII(L(tBuA))2]ClO4 (4), and [Ga(III)(L(tBuI))2]ClO4 (5) have been characterized by X-ray crystallography.
View Article and Find Full Text PDFMyo-inositol-1,2,3,4,5,6-hexakisphosphate, also known as phytate, is a natural metal chelate present in cereals, an important feedstock worldwide. This article reports the characterization of three metal storage model complexes: the homometallic Mn(II) myo-inositol-1,2,3,4,5,6-hexakisphosphate (IP6), the heterometallic Zn(II), Mn(II) analogue Na4MnZn4(C6H6O24P6) x (NO3)2 x 8H2O (MnZn4IP6) and the homometallic Zn(II) metal complex Na3Zn5(C6H6O24P6)OH x 9H2O (Zn5IP6). The techniques of high-resolution 23Na, 13C and 31P NMR, electron paramagnetic resonance (EPR) and X-ray photoelectron spectroscopy (XPS) were applied in this study.
View Article and Find Full Text PDFThe compounds [Ru(NH(3))(5)(dtdp)](TFMS)(3), [Os(NH(3))(5)(dtdp)](TFMS)(3), [(NH(3))(5)Os(dtdp)Os(NH(3))(5)](TFMS)(6), [(NH(3))(5)Os(dtdp)Ru(NH(3))(5)](TFMS)(3)(PF(6))(2), and [(NH(3))(5)Os(dtdp)Fe(CN)(5)] (dtdp = 4,4'-dithiodipyridine, TFMS = trifluoromethanesulfonate) have been synthesized and characterized by elemental analysis, cyclic voltammetry, electronic, vibrational, EPR, and (1)H NMR spectroscopies. Changes in the electronic and voltammetric spectra of the ion complex [Os(NH(3))(5)(dtdp)](3+) as a function of the solution pH enable us to calculate the pK(a) for the [Os(NH(3))(5)(dtdpH)](4+) and [Os(NH(3))(5)(dtdpH)](3+) acids as 3.5 and 5.
View Article and Find Full Text PDFX-band ESR powder studies have been done on the spin transition in Mn(2+)-doped [Fe(bpp)(2)][CF(3)SO(3)](2).H(2)O and [Fe(bpp)(2)][BF(4)](2) (bpp = 2,6-bis(pyrazol-3-yl) pyridine). The change in D value of Mn(2+) during the thermally induced high-spin (HS) <--> low-spin (LS) transition shows that the spin transition is accompanied by a phase transformation involving a domain mechanism.
View Article and Find Full Text PDFIndium(II) iodide reacts with various substituted o-quinones in nonaqueous solution by successive one-electron-transfer reactions to give (SQ)InI(2) products (SQ = semiquinonate radical anion). Electron spin resonance spectroscopy demonstrates the presence of both mono- and diradical species in the reaction mixture. Addition of 4-picoline to a mixture of In(2)I(4) and TBQ (=3,5-di-tert-butyl-o-quinone) in toluene causes the precipitation of the indium(III)-semiquinonate complex (TBSQ)InI(2)(pic)(2) whose structure has been established by X-ray crystallography: space group P&onemacr;, with a = 13.
View Article and Find Full Text PDF