Conservation breeding management aims to reduce inbreeding and maximize the retention of genetic diversity in endangered populations. However, breeding management of wild populations is still rare, and there is a need for approaches that provide data-driven evidence of the likelihood of success of alternative in situ strategies. Here, we provide an analytical framework that uses in silico simulations to evaluate, for real wild populations, (i) the degree of population-level inbreeding avoidance, (ii) the genetic quality of mating pairs, and (iii) the potential genetic benefits of implementing two breeding management strategies.
View Article and Find Full Text PDFReduced fitness as a result of inbreeding is a major threat facing many species of conservation concern [1-4]. However, few case studies for assessing the magnitude of inbreeding depression in the wild means that its relative importance as a risk factor for population persistence remains under-appreciated [5]. The increasing availability and affordability of genomic technologies provide new opportunities to address knowledge gaps around the magnitude and manifestation of inbreeding depression in wild populations [6-12].
View Article and Find Full Text PDFGenetic diversity is positively linked to the viability and evolutionary potential of species but is often compromised in threatened taxa. Genetic rescue by gene flow from a more diverse or differentiated source population of the same species can be an effective strategy for alleviating inbreeding depression and boosting evolutionary potential. The helmeted honeyeater Lichenostomus melanops cassidix is a critically endangered subspecies of the common yellow-tufted honeyeater.
View Article and Find Full Text PDF