Publications by authors named "Bruce Pitt"

Although zinc deficiency (secondary to malnutrition) has long been considered an important contributor to morbidity and mortality of infectious disease (e.g. diarrhea disorders), epidemiologic data (including randomized controlled trials with supplemental zinc) for such a role in lower respiratory tract infection are somewhat ambiguous.

View Article and Find Full Text PDF

Background: The mechanisms by which moderate tidal volume ventilation (MTV) exacerbates preexisting lung injury are unclear. We hypothesized that systemic endotoxemia the gut-lung axis would lead to non-canonical and canonical inflammasome activation and pyroptosis in a two-hit model involving polyinosinic-polycytidylic acid (Poly(I:C)), a synthetic analog of dsRNA and MTV and that this would associate with acute lung injury (ALI).

Methods: Anesthetized mice were administered Poly(I:C) intratracheally and then 6 h later, they were mechanically ventilated for 4 h with otherwise non-injurious MTV (10ml/kg).

View Article and Find Full Text PDF

Imbalance of macrophage polarization plays an indispensable role in acute lung injury (ALI), which is considered as a promising target. Matrix metalloproteinase-9 (MMP-9) is expressed in the macrophage, and has a pivotal role in secreting inflammatory cytokines. We reported that saquinavir (SQV), a first-generation human immunodeficiency virus-protease inhibitor, restricted exaggerated inflammatory response.

View Article and Find Full Text PDF

IL-33 and WNT1-inducible secreted protein (WISP1) play central roles in acute lung injury (ALI) induced by mechanical ventilation with moderate tidal volume (MTV) in the setting of sepsis. Here, we sought to determine the inter-relationship between IL-33 and WISP1 and the associated signaling pathways in this process.We used a two-hit model of cecal ligation puncture (CLP) followed by MTV ventilation (4 h 10 mL/kg) in wild-type, IL-33-/- or ST2-/- mice or wild-type mice treated with intratracheal antibodies to WISP1.

View Article and Find Full Text PDF

Acute respiratory distress syndrome is an often fatal disease that develops after acute lung injury and trauma. How released tissue damage signals, or alarmins, orchestrate early inflammatory events is poorly understood. Herein we reveal that IL-33, an alarmin sequestered in the lung epithelium, is required to limit inflammation after injury due to an unappreciated capacity to mediate Foxp3+ Treg control of local cytokines and myeloid populations.

View Article and Find Full Text PDF

Mechanical ventilation may cause ventilator‑induced lung injury (VILI). Canonical Wnt signaling has been reported to serve an important role in the pathogenesis of VILI. Bioinformatics analysis revealed that canonical and non‑canonical Wnt signaling pathways were activated in VILI.

View Article and Find Full Text PDF

Background: High tidal volume ventilation of healthy lungs or exacerbation of existing acute lung injury (ALI) by more moderate mechanical ventilation (MTV) produces ventilator-induced lung injury. It is less clear whether extrapulmonary sepsis sensitizes the lung to MTV.

Methods: We used a two-hit model of cecal ligation and puncture (CLP) followed 12 h later by MTV (10 ml/kg; 6 h) to determine whether otherwise noninjurious MTV enhances CLP-induced ALI by contrasting wildtype and TLR4 mice with respect to: alveolar-capillary permeability, histopathology and intrapulmonary levels of WNT-inducible secreted protein 1 (WISP1) and integrin β5; plasma levels of cytokines and chemokines (TNF-α, IL-6, MIP-2, MCP-1) and intrapulmonary neutrophil infiltration; and other inflammatory signaling via intrapulmonary activation of JNK, p38 and ERK.

View Article and Find Full Text PDF

Mechanical ventilation (MV) is frequently employed to manage respiratory failure in sepsis patients and is required for the surgical management of intra-abdominal sepsis. The impact of MV varies dramatically depending on tidal volume, with even moderate tidal volume (MTV) ventilation leading to ventilator-induced lung injury, whereas low tidal volume (LTV) ventilation protects against sepsis-induced acute respiratory distress syndrome. Interleukin (IL)-33 is known to contribute to lung injury in sepsis and its release can be induced by mechanical stress.

View Article and Find Full Text PDF

Interleukin 33 (IL-33), an inflammatory and mechanically responsive cytokine, is an important component of a TLR4-dependent innate immune process in mucosal epithelium. Although TLR4 also plays a role in sensing biomechanical stretch, a pathway of stretch-induced TLR4-dependent IL-33 biosynthesis has not been revealed. In the current study, we show that short term (6 h) cyclic stretch (CS) of cultured murine respiratory epithelial cells (MLE-12) increased intracellular IL-33 expression in a TLR4 dependent fashion.

View Article and Find Full Text PDF

Objective: We present an ultra-sensitive, minimally-invasive method for quantifying cotinine in dried blood spot (DBS) samples as a biomarker of exposure to tobacco smoke that can be collected using a simple heel or finger prick to obtain blood samples.

Methods: Cotinine levels were measured in matched plasma and reconstituted DBS samples from smokers and nonsmokers to evaluate assay parameters. In addition, we applied this new method to finger-prick DBS samples that were collected from infants, children and young adults ages 1-21 to estimate exposure to tobacco smoke.

View Article and Find Full Text PDF

Significance: Oxygenated polyunsaturated lipids are known to play multi-functional roles as essential signals coordinating metabolism and physiology. Among them are well-studied eicosanoids and docosanoids that are generated via phospholipase A hydrolysis of membrane phospholipids and subsequent oxygenation of free polyunsaturated fatty acids (PUFA) by cyclooxygenases and lipoxygenases. Recent Advances: There is an emerging understanding that oxygenated PUFA-phospholipids also represent a rich signaling language with yet-to-be-deciphered details of the execution machinery-oxygenating enzymes, regulators, and receptors.

View Article and Find Full Text PDF

We recently noted that the matricellular protein WISP1 contributes to sepsis induced acute lung injury (ALI) via integrin β6. In the current study, we pursued further aspects of WISP1 modulation of TLR signaling in lungs of mice after sepsis and TLR4 mediated release of TNF-α in macrophages. After confirming that TLR4 and CD14 are critical in transducing sepsis mediated ALI, we now demonstrate that intrapulmonary αvβ3 is increased by polymicrobrial sepsis in a TLR4, CD14 dependent fashion.

View Article and Find Full Text PDF

We (66) have previously described an NSAID-insensitive intramitochondrial biosynthetic pathway involving oxidation of the polyunsaturated mitochondrial phospholipid, cardiolipin (CL), followed by hydrolysis [by calcium-independent mitochondrial calcium-independent phospholipase A2-γ (iPLA2γ)] of oxidized CL (CLox), leading to the formation of lysoCL and oxygenated octadecadienoic metabolites. We now describe a model system utilizing oxidative lipidomics/mass spectrometry and bioassays on cultured bovine pulmonary artery endothelial cells (BPAECs) to assess the impact of CLox that we show, in vivo, can be released to the extracellular space and may be hydrolyzed by lipoprotein-associated PLA2 (Lp-PLA2). Chemically oxidized liposomes containing bovine heart CL produced multiple oxygenated species.

View Article and Find Full Text PDF

Introduction: An effective immune response to vaccination may be related to nutritional status. This study examined the association of plasma mineral levels with hemagglutination inhibition (HI) titers produced in response to influenza vaccine in older adults.

Methods: Prior to (Day 0) and 21 (range = 19-28) days after receiving the 2013-14 influenza vaccine, 109 adults ages 51-81 years, provided blood samples.

View Article and Find Full Text PDF
Article Synopsis
  • Unconventional gas drilling (UGD) has led to rapid natural gas extraction, raising public health concerns that have not been thoroughly investigated through human health studies.
  • A study of 15,451 live births in Southwest Pennsylvania (2007-2010) assessed the impact of UGD proximity on perinatal outcomes, categorizing mothers by exposure levels based on well density near their homes.
  • Findings indicated no significant link between UGD exposure and prematurity, but lower birth weights and higher rates of small for gestational age infants were observed in more exposed groups, highlighting the need for further research into the potential health implications of UGD.
View Article and Find Full Text PDF
Article Synopsis
  • * The study reveals that a specific phospholipid in mitochondria, cardiolipin, is oxidized by cytochrome c to produce a variety of oxygenated compounds related to cell signaling.
  • * This newly identified biosynthetic pathway generates lipid mediators through the hydrolysis of oxidized cardiolipin, particularly after tissue injury, highlighting its importance in cellular responses.
View Article and Find Full Text PDF

Protein-tyrosine phosphatase 4A3 (PTP4A3) is highly expressed in multiple human cancers and is hypothesized to have a critical, albeit poorly defined, role in the formation of experimental tumors in mice. PTP4A3 is broadly expressed in many tissues so the cellular basis of its etiological contributions to carcinogenesis may involve both tumor and stromal cells. In particular, PTP4A3 is expressed in the tumor vasculature and has been proposed to be a direct target of vascular endothelial growth factor (VEGF) signaling in endothelial cells.

View Article and Find Full Text PDF

Although a critical role for caveolae-mediated albumin transcytosis in pulmonary endothelium is well established, considerably less is known about caveolae-independent pathways. In this current study, we confirmed that cultured rat pulmonary microvascular (RPMEC) and pulmonary artery (RPAEC) endothelium endocytosed Alexa488-labeled albumin in a saturable, temperature-sensitive mode and internalization resulted in co-localization by fluorescence microscopy with cholera B toxin and caveolin-1. Although siRNA to caveolin-1 (cav-1) in RPAEC significantly inhibited albumin uptake, a remnant portion of albumin uptake was cav-1-independent, suggesting alternative pathways for albumin uptake.

View Article and Find Full Text PDF

After iron, zinc is the most abundant essential trace metal. Intracellular zinc ([Zn](i)) is maintained across a wide range of cells and species in a tight quota (100 to 500 μM) by a dynamic process of transport, intracellular vesicular storage, and binding to a large number of proteins (estimated at 3-10% of human proteome). As such, zinc is an integral component of numerous metalloenzymes, structural proteins, and transcription factors.

View Article and Find Full Text PDF

Hypozincemia, with hepatic zinc accumulation at the expense of other organs, occurs in infection, inflammation, and aseptic lung injury. Mechanisms underlying zinc partitioning or its impact on extrahepatic organs are unclear. Here we show that the major zinc-binding protein, metallothionein (MT), is critical for zinc transmigration from lung to liver during hyperoxia and preservation of intrapulmonary zinc during hyperoxia is associated with an injury-resistant phenotype in MT-null mice.

View Article and Find Full Text PDF

Trauma results in a persistent depression in adaptive immunity, which contributes to patient morbidity and mortality. This state of immune paralysis following trauma is characterized by a change in cell-mediated immunity, specifically a depression in T-cell function and a shift toward TH2 T-cell phenotype. Upregulation of inducible nitric oxide synthase (iNOS) is well recognized after injury and contributes to the inflammatory response and organ damage early after trauma.

View Article and Find Full Text PDF

Extracellular Zn(2+) activates the epithelial Na(+) channel (ENaC) by relieving Na(+) self-inhibition. However, a biphasic Zn(2+) dose response was observed, suggesting that Zn(2+) has dual effects on the channel (i.e.

View Article and Find Full Text PDF

Although strides have been made to reduce ventilator-induced lung injury (VILI), critically ill patients can vary in sensitivity to VILI, suggesting gene-environment interactions could contribute to individual susceptibility. This study sought to uncover candidate genes associated with VILI using a genome-wide approach followed by functional analysis of the leading candidate in mice. Alveolar-capillary permeability after high tidal volume (HTV) ventilation was measured in 23 mouse strains, and haplotype association mapping was performed.

View Article and Find Full Text PDF

Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) has emerged as a novel powerful MS methodology that has the ability to generate both molecular and spatial information within a tissue section. Application of this technology as a new type of biochemical lipid microscopy may lead to new discoveries of the lipid metabolism and biomarkers associated with area-specific alterations or damage under stress/disease conditions such as traumatic brain injury or acute lung injury, among others. However there are limitations in the range of what it can detect as compared with liquid chromatography-MS (LC-MS) of a lipid extract from a tissue section.

View Article and Find Full Text PDF

Rationale: Canonical transient receptor potential 4 (TRPC4) contributes to the molecular composition of a channel encoding for a calcium selective store-operated current, I(SOC), whereas Orai1 critically comprises a channel encoding for the highly selective calcium release activated calcium current, I(CRAC). However, Orai1 may interact with TRPC proteins and influence their activation and permeation characteristics. Endothelium expresses both TRPC4 and Orai1, and it remains unclear as to whether Orai1 interacts with TRPC4 and contributes to calcium permeation through the TPRC4 channel.

View Article and Find Full Text PDF