In this study, a mixed porcine-human bioengineered liver (MPH-BEL) was used in a preclinical setup of extracorporeal liver support devices as a treatment for a model of post-resection liver failure (PRLF). The potential for human clinical application is further illustrated by comparing the functional capacity of MPH-BEL grafts as assessed using this porcine PRLF model with fully human (FH-BEL) grafts which were perfused and assessed in vitro. BEL grafts were produced by reseeding liver scaffolds with HUVEC and primary porcine hepatocytes (MPH-BEL) or primary human hepatocytes (FH-BEL).
View Article and Find Full Text PDFCurr Opin Biomed Eng
September 2024
The need for organ transplants exceeds donor organ availability. In the quest to solve this shortage, the most remarkable area of advancement is organ production through the use of chimeric embryos, commonly known as blastocyst complementation. This technique involves the combination of different species to generate chimeras, where the extent of donor cell contribution to the desired tissue or organ can be regulated.
View Article and Find Full Text PDFIntroduction: Acute liver failure (ALF) is defined as acute loss of liver function leading to hepatic encephalopathy associated with a high risk of patient death. Brain injury markers in serum and tissue can help detect and monitor ALF-associated brain injury. This study compares different brain injury parameters in plasma and tissue along with the progression of ALF.
View Article and Find Full Text PDFIntroduction: The development of animal models of chronic liver disease via diet modification is a promising avenue for translational research but can lead to unexpected side effects that impact model adoption. While these side effects are well characterized in rodent models of nonalcoholic steatohepatitis (NASH), limited knowledge of these effects exists for novel porcine models of NASH. To close this gap, the present study investigates the side effects of diet-based NASH induction in pigs, with a systematic analysis of the pathologic mechanisms underlying dermatitis development and evaluation of treatment approaches.
View Article and Find Full Text PDFAcute hepatic failure is associated with high morbidity and mortality for which the only definitive therapy is liver transplantation. Some fraction of those who undergo emergency transplantation have been shown to recover native liver function when transplanted with an auxiliary hepatic graft that leaves part of the native liver intact. Thus, transplantation could have been averted with the development and use of some form of hepatic support.
View Article and Find Full Text PDFA reliable source of human hepatocytes and transplantable livers is needed. Interspecies embryo complementation, which involves implanting donor human stem cells into early morula/blastocyst stage animal embryos, is an emerging solution to the shortage of transplantable livers. We review proposed mutations in the recipient embryo to disable hepatogenesis, and discuss the advantages of using fumarylacetoacetate hydrolase knockouts and other genetic modifications to disable hepatogenesis.
View Article and Find Full Text PDFOrgan bioengineering offers a promising solution to the persistent shortage of donor organs. However, the progression of this technology toward clinical use has been hindered by the challenges of reconstituting a functional vascular network, directing the engraftment of specific functional cell types, and defining appropriate culture conditions to concurrently support the health and phenotypic stability of diverse cell lineages. We previously demonstrated the ability to functionally reendothelialize the vasculature of a clinically scaled decellularized liver scaffold with human umbilical vein endothelial cells (HUVECs) and to sustain continuous perfusion in a large animal recovery model.
View Article and Find Full Text PDFBiliary complications (strictures and leaks) represent major limitations in living donor liver transplantation. Mesenchymal stem cells (MSCs) are a promising modality to prevent biliary complications because of immunosuppressive and angiogenic properties. Our goal was to evaluate the safety of adipose-derived MSC delivery to biliary anastomoses in a porcine model.
View Article and Find Full Text PDFOwing to the increasing worldwide burden of liver diseases, the crucial need for safe and effective interventions for treating end-stage liver failure has been a very productive line of inquiry in the discipline of hepatology for many years. Liver transplantation is recognized as the most effective treatment for end-stage liver disease; however, the shortage of donor organs, high medical costs, and lifelong use of immunosuppressive agents represent major drawbacks and demand exploration for alternative treatments. Stem cell-based therapies have been widely studied in the field of liver diseases and are considered to be among the most promising therapies.
View Article and Find Full Text PDFBackground And Aims: Cell-based therapies for liver disease such as bioartificial liver rely on a large quantity and high quality of hepatocytes. Cold storage was previously shown to be a better way to preserve the viability and functionality of hepatocytes during transportation rather than freezing, but this was only proved at a lower density of rat hepatocytes spheroids. The purpose of this study was to optimize conditions for cold storage of high density of primary porcine hepatocyte spheroids.
View Article and Find Full Text PDFThis study aims to evaluate the effectiveness and safety of the spheroid reservoir bioartificial liver (SRBAL) with porcine hepatocyte organoids in a preclinical nonhuman primate model of acute liver failure (ALF). Thirty healthy rhesus monkeys were infused with α-amanitin and lipopolysaccharide and randomized into five groups (ALF alone control group; sham no-cell SRBAL treatment group; groups A, B and C with SRBAL treatment started at 12 h, 24 h and 36 h after induction of ALF, respectively). Animals were continuously treated with the SRBAL device for 6 h and followed for up to 336 h.
View Article and Find Full Text PDFBackground: Kidney congestion is a common pathophysiologic pathway of acute kidney injury (AKI) in sepsis and heart failure. There is no noninvasive tool to measure kidney intracapsular pressure (KIP) directly.
Methods: We evaluated the correlation of KIP with kidney elasticity measured by ultrasound surface wave elastography (USWE).
Cell-based therapies for liver disease rely on a high-quality supply of hepatocytes and a means for storage during transportation from site of isolation to site of usage. Unfortunately, frozen cryopreservation is associated with unacceptable loss of hepatocyte viability after thawing. The purpose of this study was to optimize conditions for cold storage of rat hepatocyte spheroids without freezing.
View Article and Find Full Text PDFUnlabelled: Maturation of induced pluripotent stem cells (hiPSCs) to hepatocyte-like cells (HLCs) has been proposed to address the shortage of human hepatocytes for therapeutic applications. The purpose of this study was to evaluate hiPSCs, HLCs and hepatocytes, all of human origin, in terms of performance metrics of relevance to cell therapies. hiPSCs were differentiated to HLCs in vitro using an established four-stage approach.
View Article and Find Full Text PDFCultivation of primary hepatocytes as spheroids creates an efficient three-dimensional model system for hepatic studies in vitro and as a cell source for a spheroid reservoir bioartificial liver. The mechanism of spheroid formation is poorly understood, as is an explanation for why normal, anchorage-dependent hepatocytes remain viable and do not undergo detachment-induced apoptosis, known as anoikis, when placed in suspension spheroid culture. The purpose of this study was to investigate the role of E-cadherin, a calcium-dependent cell adhesion molecule, in the formation and maintenance of hepatocyte spheroids.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
April 2010
A significant demand exists for a liver support device such as a Bioartifical Liver (BAL) to treat patients experiencing acute liver failure. This descriptive paper outlines the design and development of two of the key components of the Mayo Spheroid Reservoir Bioartificial Liver (SRBAL) system. One of the components is the multifunctional Spheroid Reservoir and the other is Multi-shelf Rocker.
View Article and Find Full Text PDFThis study was designed to determine optimal operating conditions of a bioartificial liver (BAL) based on mass transfer of representative hepatotoxins and mediators of immune damage. A microprocessor-controlled BAL was used to study mass transfer between patient and cell compartments separated by a hollow fiber membrane. Membrane permeability (70, 150, or 400 kDa molecular weight cut-off-MWCO), membrane convection (high: 50 mL/min; medium: 25 mL/min; low: 10 mL/min; diffusion: 0 mL/min), and albumin concentration in the cell compartment (0.
View Article and Find Full Text PDFLong term culture of primary hepatocytes is valuable for diagnostic and therapeutic applications. However, standard monolayer culture of primary hepatocytes on tissue culture plastic (TCP) - either uncoated or coated with a biological material such as collagen or laminin - is problematic. Thus, novel support matrices are under development to better maintain gene expression and differentiated function of primary hepatocytes in vitro.
View Article and Find Full Text PDFUnlabelled: The culture of primary hepatocytes as spheroids creates an efficient three-dimensional tissue construct for hepatic studies in vitro. Spheroids possess structural polarity and functional bile canaliculi with normal differentiated function. Thus, hepatocyte spheroids have been proposed as the cell source in a variety of diagnostic, discovery, and therapeutic applications, such as a bioartificial liver.
View Article and Find Full Text PDFBackground: Appropriate preclinical evaluation of a bioartificial liver assist device (BAL) demands a large animal model, as presented here, that demonstrates many of the clinical features of acute liver failure and that is suitable for clinical qualitative and quantitative evaluation of the BAL. A lethal canine liver failure model of acute hepatic failure that removes many of the artifacts evidenced in prior canine models is presented.
Methods: Six male hounds, 24-30 kg, under isoflurane anesthesia, were administered 1.
The first clinical use of the Excorp Medical Bioartificial Liver Support System (BLSS) in support of a 41-year-old African-American female with fulminant hepatic failure is described. The BLSS is currently in a Phase I/II safety evaluation at the University of Pittsburgh/UPMC System. Inclusion criteria for the study are patients with acute liver failure, any etiology, presenting with encephalopathy deteriorating beyond Parson's Grade 2.
View Article and Find Full Text PDF