Incorrect labelling of plants in the horticultural trade and misidentification is widespread. For the inspection services of the EU member states, correct identification of G. tinctoria has become important since the species was added to the List of Union concern in accordance with EU regulation 1143/2014 in August 2017.
View Article and Find Full Text PDFGrassland soils are climate-dependent ecosystems that have a significant greenhouse gas mitigating function through their ability to store large amounts of carbon (C). However, what is often not recognized is that they can also exhibit a high methane (CH) uptake capacity that could be influenced by future increases in atmospheric carbon dioxide (CO) concentration and variations in temperature and water availability. While there is a wealth of information on C sequestration in grasslands there is less consensus on how climate change impacts on CH uptake or the underlying mechanisms involved.
View Article and Find Full Text PDFThe interventions that are required for both the control and post-invasion restoration of native plant communities depends on several factors, including the efficacy of the measures that are used and how these interact with environmental factors. Here, we report on the results of an experiment on the effects of mechanical removal and herbicide application on the invasive plant and how an extreme weather event impacted on the invader and on the recovery of native coastal grassland communities. Both removal protocols were largely effective in eradicating mature plants, but the mechanical removal treatment resulted in a major increase in the number of seedlings, which was exacerbated by the extreme event.
View Article and Find Full Text PDFHeatwaves exert disproportionately strong and sometimes irreversible impacts on forest ecosystems. These impacts remain poorly understood at the tree and species level and across large spatial scales. Here, we investigate the effects of the record-breaking 2018 European heatwave on tree growth and tree water status using a collection of high-temporal resolution dendrometer data from 21 species across 53 sites.
View Article and Find Full Text PDFUnderstanding the functioning of different forest ecosystems is important due to their key role in strategies for climate change mitigation, especially through soil C sequestration. In controlled laboratory conditions, we conducted a preliminary study on six different forest soils (two coniferous, two deciduous, and two mixed sites comprising trees of different ages) collected from the same region. The aim was to explore any differences and assess seasonal changes in soil microbial parameters (basal respiration BR, microbial biomass C, metabolic quotient qCO, dehydrogenase activity DHA, and C:C ratio).
View Article and Find Full Text PDFBackground: Photosynthesis is a key process in plants that is compromised by the oxygenase activity of Rubisco, which leads to the production of toxic compound phosphoglycolate that is catabolized by photorespiratory pathway. Transformation of plants with photorespiratory bypasses have been shown to reduce photorespiration and enhance plant biomass. Interestingly, engineering of a single gene from such photorespiratory bypasses has also improved photosynthesis and plant productivity.
View Article and Find Full Text PDFPlant invasions represent a major global change in land/vegetation cover with the potential to significantly modify greenhouse gas (GHG) emissions. To get a better understanding of the impacts of terrestrial invasive plants on soil GHG emissions we report, firstly, on experiments conducted on invasive populations of the N-fixing herbaceous species Gunnera tinctoria in Ireland, and secondly, compare our results with published information based on a systematic review of the literature. For G.
View Article and Find Full Text PDFLitter inputs can influence soil respiration directly through labile C availability and, indirectly, through the activity of soil microorganisms and modifications in soil microclimate; however, their relative contributions and the magnitude of any effect remain poorly understood. We synthesized 66 recently published papers on forest ecosystems using a meta-analysis approach to investigate the effect of litter inputs on soil respiration and the underlying mechanisms involved. Our results showed that litter inputs had a strong positive impact on soil respiration, labile C availability, and the abundance of soil microorganisms, with less of an impact related to soil moisture and temperature.
View Article and Find Full Text PDFWhilst a range of strategies have been proposed for enhancing crop productivity, many recent studies have focused primarily on enhancing leaf photosynthesis under current atmospheric CO2 concentrations. Given that the atmospheric CO2 concentration is likely to increase significantly in the foreseeable future, an alternative/complementary strategy might be to exploit any variability in the enhancement of growth/yield and photosynthesis at higher CO2 concentrations. To explore this, we investigated the responses of a diverse range of wild and cultivated ryegrass genotypes, with contrasting geographical origins, to ambient and elevated CO2 concentrations and examined what genetically tractable plant trait(s) might be targeted by plant breeders for future yield enhancements.
View Article and Find Full Text PDFGlobally, soils store two to three times as much carbon as currently resides in the atmosphere, and it is critical to understand how soil greenhouse gas (GHG) emissions and uptake will respond to ongoing climate change. In particular, the soil-to-atmosphere CO flux, commonly though imprecisely termed soil respiration (R ), is one of the largest carbon fluxes in the Earth system. An increasing number of high-frequency R measurements (typically, from an automated system with hourly sampling) have been made over the last two decades; an increasing number of methane measurements are being made with such systems as well.
View Article and Find Full Text PDFInteractions between the carbon (C) and nitrogen (N) cycles can impact on the sensitivity of terrestrial C storage to elevated atmospheric carbon dioxide (CO) concentrations (eCO). However, the underlying mechanisms associated with CN interactions that influence terrestrial ecosystem C sequestration (C) remains unclear. Here, we quantitatively analyzed published C and N responses to experimentally eCO using a meta-analysis approach.
View Article and Find Full Text PDFThe original version of this Article contained an error in the first sentence of the Acknowledgements section, which incorrectly referred to the Estonian Research Council grant identifier as "PUTJD618". The correct version replaces the grant identifier with "PUTJD619". This has been corrected in both the PDF and HTML versions of the Article.
View Article and Find Full Text PDFNitrous oxide (NO) is a powerful greenhouse gas and the main driver of stratospheric ozone depletion. Since soils are the largest source of NO, predicting soil response to changes in climate or land use is central to understanding and managing NO. Here we find that NO flux can be predicted by models incorporating soil nitrate concentration (NO), water content and temperature using a global field survey of NO emissions and potential driving factors across a wide range of organic soils.
View Article and Find Full Text PDFClimate change is expected to increase the frequency of above-normal atmospheric water deficits contemporaneous with periods of high temperatures. Here we explore alterations in physiology and gene expression in leaves of Coffea canephora Pierre ex A. Froehner caused by a sharp drop in relative humidity (RH) at three different temperatures.
View Article and Find Full Text PDFFront Plant Sci
October 2014
Invasions by alien plants provide a unique opportunity to examine competitive interactions among plants. While resource competition has long been regarded as a major mechanism responsible for successful invasions, given a well-known capacity for many invaders to become dominant and reduce plant diversity in the invaded communities, few studies have measured resource competition directly or have assessed its importance relative to that of other mechanisms, at different stages of an invasion process. Here, we review evidence comparing the competitive ability of invasive species vs.
View Article and Find Full Text PDFMost research on the genetics of invasive plant species has focused on analyzing spatial differences among existing populations. Using a long-established Gunnera tinctoria population from Ireland, we evaluated the potential of using plants derived from seeds associated with different soil layers to track genetic variation through time. This species and site were chosen because (1) G.
View Article and Find Full Text PDFThe growing economic and ecological damage associated with biological invasions, which will likely be exacerbated by climate change, necessitates improved projections of invasive spread. Generally, potential changes in species distribution are investigated using climate envelope models; however, the reliability of such models has been questioned and they are not suitable for use at local scales. At this scale, mechanistic models are more appropriate.
View Article and Find Full Text PDFIn this study, we compared measured and simulated Net Ecosystem Exchange (NEE) values from three wide spread ecosystems in the southeast of Ireland (forest, arable and grassland), and investigated the suitability of the DNDC (the DeNitrification-DeComposition) model to estimate present and future NEE. Although, the field-DNDC version overestimated NEE at temperatures >5 °C, forest-DNDC under-estimated NEE at temperatures >5 °C. The results suggest that the field/forest DNDC models can successfully estimate changes in seasonal and annual NEE from these ecosystems.
View Article and Find Full Text PDFGunnera is the only genus of angiosperms known to host cyanobacteria and the only group of land plants that hosts cyanobacteria intracellularly. Motile filaments of cyanobacteria, known as hormogonia, colonize Gunnera plants through cells in the plant's specialized stem glands. It is commonly held that Gunnera plants always possess functional glands for symbiosis.
View Article and Find Full Text PDFIn the field significant differences in maximum photosynthetic O -exchange rate (P ) were found between leaves of Mycelis muralis (L.) Dumort (Asteraceae) collected from woodland and exposed habitats, with the highest values in the exposed sites- However, there were no differences in the P of leaves collected from plants growing in grikes (fissures in the limestone pavement), of exposed limestone pavement, despite a greater than four-fold difference in the integrated daily irradiance. Leaves of plants from the open pavement had lower photon yields (ø ) and higher dark respiration rates and light compensation points, in comparison to shaded plants.
View Article and Find Full Text PDFVariations in the apparent photon requirement for photosynthesis (Φ ) or (Φ ) in the data of Warburg & Burk (1950) and Yuan, Evans & Daniels (1955) can be ascribed to changes in O uptake and energy-dependent processes which result in aberrant photon requirements in organisms subjected to non-optimal conditions. The increase in Φ with increases in the gas exchange quotient (γ) in the observations of Yuan et al. (1955) is consistent with increases in photorespiratory production of glycollate, whilst changes in Φ and Φ in the results of Warburg & Burk (1950) can be explained by a variable Kok effect associated with nitrate assimilation at low light levels.
View Article and Find Full Text PDF