Publications by authors named "Bruce Misstear"

Identifying the origin of faecal pollution in water is needed for effective water management decisions to protect both human health and aquatic ecosystems. Traditionally used indicators of faecal contamination, such as E. coli, only indicate pollution from warm-blooded animals and not the specific source of contamination; hence, more source specific tracers are required.

View Article and Find Full Text PDF

Private wells in Ireland and elsewhere have been shown to be prone to microbial contamination with the main suspected sources being practices associated with agriculture and domestic wastewater treatment systems (DWWTS). While the microbial quality of private well water is commonly assessed using faecal indicator bacteria, such as Escherichia coli, such organisms are not usually source-specific, and hence cannot definitively conclude the exact origin of the contamination. This research assessed a range of different chemical contamination fingerprinting techniques (ionic ratios, artificial sweeteners, caffeine, fluorescent whitening compounds, faecal sterol profiles and pharmaceuticals) as to their use to apportion contamination of private wells between human wastewater and animal husbandry wastes in rural areas of Ireland.

View Article and Find Full Text PDF

Traffic is a major source of urban air pollution that affects health, especially among children. As lower speed limits are commonly applied near schools in many cities, and different governments have different policies on vehicle fleet composition, this research estimated how different speed limits and fleet emissions affect air quality near a primary school. Based on data of traffic, weather, and background air quality records in Dublin from 2013, traffic, emission, and dispersion models were developed to assess the impact of different speed limits and fleet composition changes against current conditions.

View Article and Find Full Text PDF

Ireland reported the highest non-compliance with respect to total trihalomethanes (TTHMs) in drinking water across the 27 European Union Member States for the year 2010. We carried out a GIS-based investigation of the links between geographical parameters and catchment land-uses with TTHMs concentrations in Irish drinking water. A high risk catchment map was created using peat presence, rainfall (>1400 mm) and slope (<5%) and overlain with a map comprising the national dataset of routinely monitored TTHM concentrations.

View Article and Find Full Text PDF

Air pollution is now recognized as the world's single largest environmental and human health threat. Indeed, a large number of environmental epidemiological studies have quantified the health impacts of population exposure to pollution. In previous studies, exposure estimates at the population level have not considered spatially- and temporally varying populations present in study regions.

View Article and Find Full Text PDF

This article describes a new methodology for increasing the spatial representativeness of individual monitoring sites. Air pollution levels at a given point are influenced by emission sources in the immediate vicinity. Since emission sources are rarely uniformly distributed around a site, concentration levels will inevitably be most affected by the sources in the prevailing upwind direction.

View Article and Find Full Text PDF

Ptaquiloside, along with other natural phytotoxins, is receiving increased attention from scientists and land use managers. There is an urgent need to increase empirical evidence to understand the scale of phytotoxin mobilisation and potential to enter into the environment. In this study the risk of ptaquiloside to drinking water was assessed by quantifying ptaquiloside in the receiving waters at three drinking water abstraction sites across Ireland and in bracken fronds surrounding the abstraction sites.

View Article and Find Full Text PDF
Article Synopsis
  • Diverse land use activities increase the risk of microbiological contamination in stream headwaters, prompting the need for effective water quality monitoring.
  • Monitoring in a 17 km² agricultural area showed no significant difference in fecal contamination levels during periods when spreading organic fertilizer was restricted compared to open periods, indicating persistent fecal pollution.
  • Microbial source tracking revealed that bovine waste was more dominant during open periods, while human waste signatures were more prominent when restrictions were in place, suggesting that winter land use restrictions can help limit agricultural waste impacts on water quality.
View Article and Find Full Text PDF

The specific aims of this paper are to: (i) quantify the effects of various long range transport pathways nitrogen dioxide (NO2) and particulate matter with diameter less than 10μm (PM10) concentrations in Ireland and identify air mass movement corridors which may lead to incidences poor air quality for application in forecasting; (ii) compare the effects of such pathways at various sites; (iii) assess pathways associated with a period of decreased air quality in Ireland. The origin of and the regions traversed by an air mass 96h prior to reaching a receptor is modelled and k-means clustering is applied to create air-mass groups. Significant differences in air pollution levels were found between air mass cluster types at urban and rural sites.

View Article and Find Full Text PDF

One of the key threats to groundwater and surface water quality in Ireland is the impact of poorly designed, constructed or maintained on-site wastewater treatment systems. An extensive study was carried out to quantify the impact of existing sites on water quality. Six existing sites, consisting of a traditional septic tank and soakaway system, located in various ranges of subsoil permeabilities were identified and monitored to determine how well they function under varying subsoil and weather conditions.

View Article and Find Full Text PDF

An integrated domestic well sampling and "susceptibility assessment" programme was undertaken in the Republic of Ireland from April 2008 to November 2010. Overall, 211 domestic wells were sampled, assessed and collated with local climate data. Based upon groundwater physicochemical profile, three clusters have been identified and characterised by source type (borehole or hand-dug well) and local geological setting.

View Article and Find Full Text PDF

Exposure to airborne particulate matter (PM) has been linked to cardiovascular morbidity and mortality. Heart rate variability (HRV) is a measure of the change in cardiac autonomic function, and consistent links between PM exposure and decreased HRV have been documented in studies. This study quantitatively assesses the acute relative variation of HRV with predicted PM dose in the lungs of commuters.

View Article and Find Full Text PDF

While the safety of public drinking water supplies in the Republic of Ireland is governed and monitored at both local and national levels, there are currently no legislative tools in place relating to private supplies. It is therefore paramount that private well owners (and users) be aware of source specifications and potential contamination risks, to ensure adequate water quality. The objective of this study was to investigate the level of awareness among private well owners in the Republic of Ireland, relating to source characterisation and groundwater contamination issues.

View Article and Find Full Text PDF

Microbial and chemical contamination of drinking water supplies can cause human health problems. Microbial pathogens are of primary concern and quantitative microbial risk assessment (QMRA) is employed to assess and manage the risks they pose. Estimates of drinking water consumption, or distributions, are required to assess levels of waterborne pathogen exposure.

View Article and Find Full Text PDF

Background concentrations of nitrogen dioxide (NO(2)) are not constant but vary temporally and spatially. The current paper presents a powerful tool for the quantification of the effects of wind direction and wind speed on background NO(2) concentrations, particularly in cases where monitoring data are limited. In contrast to previous studies which applied similar methods to sites directly affected by local pollution sources, the current study focuses on background sites with the aim of improving methods for predicting background concentrations adopted in air quality modelling studies.

View Article and Find Full Text PDF