Importance: Advances in treatment of traumatic brain injury are hindered by the inability to monitor pathological mechanisms in individual patients for targeted neuroprotective treatment. Spreading depolarizations, a mechanism of lesion development in animal models, are a novel candidate for clinical monitoring in patients with brain trauma who need surgery.
Objective: To test the null hypothesis that spreading depolarizations are not associated with worse neurologic outcomes.
Background: Spreading depolarizations (SDs) occur in 50-60% of patients after surgical treatment of severe traumatic brain injury (TBI) and are independently associated with unfavorable outcomes. Here we performed a pilot study to examine the relationship between SDs and various types of intracranial lesions, progression of parenchymal damage, and outcomes.
Methods: In a multicenter study, fifty patients (76% male; median age 40) were monitored for SD by continuous electrocorticography (ECoG; median duration 79 h) following surgical treatment of severe TBI.
Object: Bone allografts used for interbody spinal fusion are often preserved through either freeze drying or lowtemperature freezing, each having disadvantages related to graft preparation time and material properties. In response, a glycerol preservation treatment has been developed to maintain the biomechanical properties of allografts at ambient temperatures, requiring no thawing or rehydration and minimal rinsing prior to implantation. The authors conducted a prospective randomized study to compare the clinical results of glycerol-preserved Cloward dowels and those of freezedried Cloward dowels in anterior cervical discectomy and fusion.
View Article and Find Full Text PDFObject: Mass lesions from traumatic brain injury (TBI) often require surgical evacuation as a life-saving measure and to improve outcomes, but optimal timing and surgical technique, including decompressive craniectomy, have not been fully defined. The authors compared neurosurgical approaches in the treatment of TBI at 2 academic medical centers to document variations in real-world practice and evaluate the efficacies of different approaches on postsurgical course and long-term outcome.
Methods: Patients 18 years of age or older who required neurosurgical lesion evacuation or decompression for TBI were enrolled in the Co-Operative Studies on Brain Injury Depolarizations (COSBID) at King's College Hospital (KCH, n = 27) and Virginia Commonwealth University (VCU, n = 24) from July 2004 to March 2010.
Spinal cord injury (SCI) often results in irreversible and permanent neurological deficits and long-term disability. Vasospasm, hemorrhage, and loss of microvessels create an ischemic environment at the site of contusive or compressive SCI and initiate the secondary injury cascades leading to progressive tissue damage and severely decreased functional outcome. Although the initial mechanical destructive events cannot be reversed, secondary injury damage occurs over several hours to weeks, a time frame during which therapeutic intervention could be achieved.
View Article and Find Full Text PDFSpinal cord injury results in tissue necrosis in and around the lesion site, commonly leading to the formation of a fluid-filled cyst. This pathological end point represents a physical gap that impedes axonal regeneration. To overcome the obstacle of the cavity, we have explored the extent to which axonal substrates can be bioengineered through electrospinning, a process that uses an electrical field to produce fine fibres of synthetic or biological molecules.
View Article and Find Full Text PDFBackground: Pathological waves of spreading mass neuronal depolarisation arise repeatedly in injured, but potentially salvageable, grey matter in 50-60% of patients after traumatic brain injury (TBI). We aimed to ascertain whether spreading depolarisations are independently associated with unfavourable neurological outcome.
Methods: We did a prospective, observational, multicentre study at seven neurological centres.
We describe the structural and functional properties of three-dimensional (3D) nerve guides fabricated from poly-ε-caprolactone (PCL) using the air gap electrospinning process. This process makes it possible to deposit nano-to-micron diameter fibers into linear bundles that are aligned in parallel with the long axis of a cylindrical construct. By varying starting electrospinning conditions it is possible to modulate scaffold material properties and void space volume.
View Article and Find Full Text PDFA robust and complex inflammatory cascade is known to be a prominent component of secondary injury following spinal cord injury (SCI). Specifically, the concept of trauma-induced autoimmunity has linked the lymphocyte population with neural tissue injury and neurologic deficit. FTY720, a sphingosine receptor modulator that sequesters lymphocytes in secondary lymphoid organs, has been shown to be effective in the treatment of a variety of experimental autoimmune disorders.
View Article and Find Full Text PDFObject: Few therapies have consistently demonstrated effectiveness in preserving O2 delivery after spinal cord injury (SCI). Perfluorocarbons (PFCs) offer great promise to carry and deliver O2 more efficiently than conventional measures. The authors investigated the use of Clark-type microelectrodes to monitor spinal cord oxygenation directly (intraparenchymal [IP] recording) and indirectly (cerebrospinal fluid [CSF] recording) in the context of SCI, O2 therapy, and PFC treatment.
View Article and Find Full Text PDFObject: The authors designed a study to compare low-profile titanium miniplate fixation to that in which stainless steel wire is used.
Methods: Before undergoing craniotomy, 40 patients gave informed consent and were randomized to receive either wire or miniplate fixation. After dural closure, bone flap fixation was timed.