Publications by authors named "Bruce M Fenton"

Perinatal environmental exposures are potentially important contributors to the increase in autoimmune diseases. Yet, the mechanisms by which these exposures increase self-reactive immune responses later in life are poorly understood. Autoimmune diseases require CD4(+) T cells for initiation, progression, and/or clinical symptoms; thus, developmental exposures that cause durable changes in CD4(+) T cells may play a role.

View Article and Find Full Text PDF

We developed a simple, rapid and quantitative assay using the fluorescent probe PicoGreen to measure the concentration of ionizing radiation-induced double-stranded DNA (dsDNA) in mouse plasma, and we correlated this concentration with the radiation dose. With 70 μl of blood obtained by fingerstick, this 30 min assay reduces protein interference without extending sample processing time. Plasma from nonirradiated mice (BALB/c and NIH Swiss) was pooled, diluted and spiked with dsDNA to establish sensitivity and reproducibility of the assay to quantify plasma dsDNA.

View Article and Find Full Text PDF

The human placenta performs multiple essential functions required for successful pregnancy. Alterations in the placental vasculature have been implicated in severe complications of pregnancy. Despite the importance of placental vascular function during pregnancy, there are gaps in our knowledge regarding the molecular pathways that control vessel development.

View Article and Find Full Text PDF

Purpose: Acute gastrointestinal syndrome (AGS) resulting from ionizing radiation causes death within 7 days. Currently, no satisfactory agent exists for mitigation of AGS. A peptide derived from the receptor binding domain of fibroblast growth factor 2 (FGF-P) was synthesized and its mitigation effect on AGS was examined.

View Article and Find Full Text PDF

The main circulating estrogen hormone 17beta-estradiol (E2) contributes to the initiation and progression of breast cancer. Estrogen receptors (ERs), as transcription factors, mediate the effects of E2. Ablation of the circulating E2 and/or prevention of ER functions constitute approaches for ER-positive breast cancer treatments.

View Article and Find Full Text PDF

Purpose: Current biodosimetric techniques for determining radiation exposure have inherent delays, as well as quantitation and interpretation limitations. We have identified a new technique with the advantage of directly measuring circulating DNA by amplifying inter-B1 regions in the mouse genome, providing a sensitive method for quantitating plasma DNA.

Methods And Materials: Real-time quantitative polymerase chain reaction (PCR) was used to detect levels of DNA by amplifying inter-B1 genomic DNA in plasma samples collected at 0-48 h from mice receiving 0-10 Gy total- or partial-body irradiation ((137)Cs gamma-ray source at approximately 1.

View Article and Find Full Text PDF

A variety of antiangiogenic strategies have proven effective in preclinical tumor models, either as single agents or in combination with radiation. Clinical gains have been relatively modest, however, and questions remain regarding optimal scheduling. The objectives of the current work were to evaluate whether the sequencing of acute treatment critically affects tumor pathophysiological and therapeutic response.

View Article and Find Full Text PDF

Although antiangiogenic strategies have proven highly promising in preclinical studies and some recent clinical trials, generally only combinations with cytotoxic therapies have shown clinical effectiveness. An ongoing question has been whether conventional therapies are enhanced or compromised by antiangiogenic agents. The present studies were designed to determine the pathophysiologic consequences of both single and combined treatments using fractionated radiotherapy plus AG-013736, a receptor tyrosine kinase inhibitor that preferentially inhibits vascular endothelial growth factor receptors.

View Article and Find Full Text PDF

Purpose: The lack of effective treatment for pancreatic cancer results in a very low survival rate. This study explores the enhancement of the therapeutic effect on human pancreatic cancer via the combination of triptolide and ionizing radiation (IR).

Experimental Design: In vitro AsPC-1 human pancreatic cancer cells were treated with triptolide alone, IR alone, or triptolide plus IR.

View Article and Find Full Text PDF

Ultrasound-induced blood stasis has been observed for more than 30 years. Most of the literature has been focused on the health risks associated with this phenomenon and methods employed to prevent stasis from occurring during ultrasound imaging. To date, experimental observations have been either in vitro or invasive.

View Article and Find Full Text PDF

Purpose: To investigate the effect of esculentoside A (EsA) on radiation-induced cutaneous and fibrovascular toxicity and its possible molecular mechanisms, both in vivo and in vitro.

Methods And Materials: Mice received drug intervention 18 hours before 30 Gy to the right hind leg. Alterations in several cytokines expressed in skin tissue 2 days after irradiation were determined by ELISA.

View Article and Find Full Text PDF

Since conventional therapies are directly dependent on the supply of either drugs or oxygen, a key question is whether antiangiogenic agents produce detrimental effects on tumor vascular function, thus compromising combination therapies. A second question is whether experimental results based on fast-growing, transplanted tumors mimic those in slowly developing spontaneous tumors, which may be more representative of response in human primary tumors. To investigate changes in tumor pathophysiology, three antiangiogenic agents were compared: a) endostatin, b) anti-VEGFR-2 (DC101), and c) celecoxib.

View Article and Find Full Text PDF

Although clinical trials of antiangiogenic strategies have been disappointing when administered as single agents, such approaches can play an important role in cancer treatment when combined with conventional therapies. Previous studies have shown that DC101, an antiangiogenic monoclonal antibody against vascular endothelial growth factor receptor-2, can produce significant growth inhibition in spontaneous and transplanted tumors but can also induce substantial hypoxia. Because DC101 appears to potentiate radiotherapy in some tumors, the present studies were undertaken to characterize pathophysiological changes following combined therapy and to determine whether radioresponse is enhanced despite the induction of hypoxia.

View Article and Find Full Text PDF

Background And Purpose: The primary objectives of this study were to address two major questions. (1) Does VEGF receptor-2 antibody (DC101) produce detrimental effects on tumor vascular function and oxygenation that could compromise adjuvant therapies? (2) Is pathophysiological response to such antiangiogenic strategies different in transplanted versus primary spontaneous tumors?

Materials And Methods: The effects of early and late initiation DC101 treatment were evaluated using spontaneous murine mammary carcinomas and two markedly different transplanted mammary tumors, MCa-35 and MCa-4. Mice were administered DC101 or saline, tumors were frozen, and immunohistochemical staining was quantified using image analysis of multiply-stained frozen sections.

View Article and Find Full Text PDF

Purpose: Recent results in the literature have demonstrated that the antiangiogenic agent endostatin can enhance antitumor effects when administered before or during radiotherapy. To better understand the underlying pathophysiologic basis for this radiosensitization, the current study investigated whether short-term endostatin administration is linked to alterations in tumor vascular perfusion and oxygen delivery.

Methods And Materials: Three daily doses of recombinant endostatin (20 mg/kg) were administered to two murine mammary carcinomas, the highly vascularized MCa-35 and the less vascularized MCa-4.

View Article and Find Full Text PDF

Isotransplants of murine fibrosarcoma (KHT) cells were inoculated i.m. into the hind limbs of 6-8 week-old female C3H/HeJ mice.

View Article and Find Full Text PDF

Breast tumors expressing no detectable FGFs (MCF-7) were compared with tumors transfected with FGF4 or FGF1 (FGF4/MCF-7 or FGF1/MCF-7), and with MDA-MB-435, which produce endogenous FGF2. Tumor blood flow was measured by 133Xe diffusion, oxygen distribution was measured by Eppendorf pO2 histography, and vascular density was measured by CD31 staining. Tumors that overexpress angiogenic factors grew at a rate far exceeding that of MCF-7.

View Article and Find Full Text PDF

Since quantitative measurements of tumor vascular function cannot be obtained in human tumors, appropriate animal tumor models must be utilized. The current studies were undertaken to compare transplantable, murine KHT tumors with primary and 1st generation transplants of spontaneous mammary carcinomas. To evaluate changes in tumor vascular structure and function, immunostaining of total and perfused vascular spacing, and cryospectrophotometric measurement of intravascular HbO2 saturations were utilized.

View Article and Find Full Text PDF

Alteration of the phenotype of breast cancers from estrogen-dependent to estrogen-independent growth often leads to the failure of antiestrogenic tumor therapies. We report that overexpression of vascular endothelial growth factor (VEGF) by estrogen-dependent MCF-7 breast cancer cells could abolish estrogen-dependent tumor growth in ovariectomized mice. In the absence of estrogen, MCF-7 VEGF-expressing tumors with increased vessel density showed growth kinetics similar to, or even greater than, that of parental MCF-7 tumors with estrogen supplementation.

View Article and Find Full Text PDF