Aβ deposition is a pathological hallmark of Alzheimer's disease (AD). Besides the full-length amyloid forming peptides (Aβ and Aβ), biochemical analyses of brain deposits have identified a variety of N- and C-terminally truncated Aβ variants in sporadic and familial AD patients. However, their relevance for AD pathogenesis remains largely understudied.
View Article and Find Full Text PDFAmyloid β (Aβ) oligomers are the predominant toxic species in the pathology of Alzheimer's disease. The prevailing mechanism for toxicity by Aβ oligomers includes ionic homeostasis destabilization in neuronal cells by forming ion channels. These channel structures have been previously studied in model lipid bilayers.
View Article and Find Full Text PDFTau is a microtubule associated protein implicated in the pathogenesis of several neurodegenerative diseases. Because of the channel forming properties of other amyloid peptides, we employed planar lipid bilayers and atomic force microscopy to test tau for its ability to form ion permeable channels. Our results demonstrate that tau can form such channels, but only under acidic conditions.
View Article and Find Full Text PDFAggregation can be studied by a range of methods, experimental and computational. Aggregates form in solution, across solid surfaces, and on and in the membrane, where they may assemble into unregulated leaking ion channels. Experimental probes of ion channel conformations and dynamics are challenging.
View Article and Find Full Text PDFMembrane permeability to ions and small molecules is believed to be a critical step in the pathology of Alzheimer's disease (AD). Interactions of oligomers formed by amyloid-β (Aβ) peptides with the plasma cell membrane are believed to play a fundamental role in the processes leading to membrane permeability. Among the family of Aβs, pyroglutamate (pE)-modified Aβ peptides constitute the most abundant oligomeric species in the brains of AD patients.
View Article and Find Full Text PDFAmong the family of Aβ peptides, pyroglutamate-modified Aβ (AβpE) peptides are particularly associated with cytotoxicity in Alzheimer's disease (AD). They represent the dominant fraction of Aβ oligomers in the brains of AD patients, but their accumulation in the brains of elderly individuals with normal cognition is significantly lower. Accumulation of AβpE plaques precedes the formation of plaques of full-length Aβ (Aβ1-40/42).
View Article and Find Full Text PDFAggregation of disordered amyloidogenic peptides into oligomers is the causative agent of amyloid-related diseases. In solution, disordered protein states are characterized by heterogeneous ensembles. Among these, β-rich conformers self-assemble via a conformational selection mechanism to form energetically-favored cross-β structures, regardless of their precise sequences.
View Article and Find Full Text PDFAn unusual ΔE693 mutation in the amyloid precursor protein (APP) producing a β-amyloid (Aβ) peptide lacking glutamic acid at position 22 (Glu22) was recently discovered, and dabbed the Osaka mutant (ΔE22). Previously, several point mutations in the Aβ peptide involving Glu22 substitutions were identified and implicated in the early onset of familial Alzheimer's disease (FAD). Despite the absence of Glu22, the Osaka mutant is also associated with FAD, showing a recessive inheritance in families affected by the disease.
View Article and Find Full Text PDFThe current paradigm in the amyloid hypothesis brands small β-amyloid (Aβ) oligomers as the toxic species in Alzheimer's disease (AD). These oligomers are fibril-like; contain β-sheet structure, and present exposed hydrophobic surface. Oligomers with this motif are capable of penetrating the cell membrane, gathering to form toxic ion channels.
View Article and Find Full Text PDFAmyloid-β (Aβ) oligomers destabilize cellular ionic homeostasis, mediating Alzheimer's disease (AD). It is still unclear whether the mechanism (i) is mediated by cell surface receptors; (ii) is direct, with Aβ oligomers interacting with membrane lipids; or (iii) both mechanisms take place. Recent studies indicate that Aβ oligomers may act by either of the last two.
View Article and Find Full Text PDFProg Mol Biol Transl Sci
August 2012
The neurodegenerative diseases described in this volume, as well as many nonneurodegenerative diseases, are characterized by deposits known as amyloid. Amyloid has long been associated with these various diseases as a pathological marker and has been implicated directly in the molecular pathogenesis of disease. However, increasing evidence suggests that these proteinaceous Congo red staining deposits may not be toxic or destructive of tissue.
View Article and Find Full Text PDFAlzheimer's disease (AD) is the most common type of senile dementia in aging populations. Amyloid β (Aβ)-mediated dysregulation of ionic homeostasis is the prevailing underlying mechanism leading to synaptic degeneration and neuronal death. Aβ-dependent ionic dysregulation most likely occurs either directly via unregulated ionic transport through the membrane or indirectly via Aβ binding to cell membrane receptors and subsequent opening of existing ion channels or transporters.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a misfolded protein disease characterized by the accumulation of β-amyloid (Aβ) peptide as senile plaques, progressive neurodegeneration, and memory loss. Recent evidence suggests that AD pathology is linked to the destabilization of cellular ionic homeostasis mediated by toxic pores made of Aβ peptides. Understanding the exact nature by which these pores conduct electrical and molecular signals could aid in identifying potential therapeutic targets for the prevention and treatment of AD.
View Article and Find Full Text PDFA current hypothesis for the pathology of Alzheimer's disease (AD) proposes that amyloid-β (Aβ) peptides induce uncontrolled, neurotoxic ion flux across cellular membranes. The mechanism of ion flux is not fully understood because no experiment-based Aβ channel structures at atomic resolution are currently available (only a few polymorphic states have been predicted by computational models). Structural models and experimental evidence lend support to the view that the Aβ channel is an assembly of loosely associated mobile β-sheet subunits.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a protein misfolding disease characterized by a buildup of β-amyloid (Aβ) peptide as senile plaques, uncontrolled neurodegeneration, and memory loss. AD pathology is linked to the destabilization of cellular ionic homeostasis and involves Aβ peptide-plasma membrane interactions. In principle, there are two possible ways through which disturbance of the ionic homeostasis can take place: directly, where the Aβ peptide either inserts into the membrane and creates ion-conductive pores or destabilizes the membrane organization, or, indirectly, where the Aβ peptide interacts with existing cell membrane receptors.
View Article and Find Full Text PDFMore than two dozen clinical syndromes known as amyloid diseases are characterized by the buildup of extended insoluble fibrillar deposits in tissues. These amorphous Congo red staining deposits known as amyloids exhibit a characteristic green birefringence and cross-β structure. Substantial evidence implicates oligomeric intermediates of amyloids as toxic species in the pathogenesis of these chronic disease states.
View Article and Find Full Text PDFOver 20 clinical syndromes have been described as amyloid diseases. Pathologically, these illnesses are characterized by the deposition in various tissues of amorphous, Congo red stainingdeposits, referred to as amyloid. Under polarizing light microscopy, these deposits exhibit characteristic green birefringence.
View Article and Find Full Text PDFFull-length amyloid beta peptides (Abeta(1-40/42)) form neuritic amyloid plaques in Alzheimer's disease (AD) patients and are implicated in AD pathology. However, recent transgenic animal models cast doubt on their direct role in AD pathology. Nonamyloidogenic truncated amyloid-beta fragments (Abeta(11-42) and Abeta(17-42)) are also found in amyloid plaques of AD and in the preamyloid lesions of Down syndrome, a model system for early-onset AD study.
View Article and Find Full Text PDFThe channel hypothesis of Alzheimer's disease (AD) proposes that the beta-amyloid (Abeta) peptides which accumulate in plaques in the brain actually damage and/or kill neurons by forming ion channels. Evidence from a number of laboratories has demonstrated that Abeta peptides can form ion channels in lipid bilayers, liposomes, neurons, oocyctes, and endothelial cells. These channels possess distinct physiologic characteristics that would be consistent with their toxic properties.
View Article and Find Full Text PDFAbeta25-35, a fragment of the neurotoxic amyloid beta protein Abeta1-42 found in the brain of Alzheimer patients, possesses amyloidogenic, neurotoxins and channel forming abilities similar to that of Abeta1-42. We have previously reported that Abeta25-35 formed voltage-dependent, relatively nonselective, ion-permeable channels in planar lipid bilayers. Here, we show that Abeta25-35 formed channels in both solvent-containing and solvent-free bilayers.
View Article and Find Full Text PDFSerum amyloid A (SAA) is a family of closely related apolipoproteins associated with high density lipoprotein (HDL). Subclasses of SAA isoforms are differentially expressed constitutively and during inflammation. During states of infection or inflammation, levels of HDL bound, acute phase isoforms of SAA rise as much as 1000-fold in the serum, suggesting that it might play a role in host defense.
View Article and Find Full Text PDF