Carba-NAD is a synthetic compound identical to NAD except for one substitution, where an oxygen atom adjacent to the anomeric linkage bearing nicotinamide is replaced with a methylene group. Because it is inert in nicotinamide displacement reactions, carba-NAD is an unreactive substrate analogue for NAD-consuming enzymes. SIRT3 and SIRT5 are NAD-consuming enzymes that are potential therapeutic targets for the treatment of metabolic diseases and cancers.
View Article and Find Full Text PDFO-Acetyl-ADP-ribose (OAADPR) is a metabolite produced from nicotinamide adenine dinucleotide (NAD) as a product of sirtuin-mediated protein deacetylation. We present here a simple, one-step, nonenzymatic synthesis of OAADPR from NAD and sodium acetate in acetic acid. We extended the reaction to other carboxylic acids, demonstrating that the reaction between NAD and nonaqueous carboxylate buffers produces mixtures of the corresponding 2'- and 3'-carboxylic esters.
View Article and Find Full Text PDFBioorg Med Chem Lett
August 2008
A series of structurally novel stearoyl-CoA desaturase1 (SCD1) inhibitors has been identified via molecular scaffold manipulation. Preliminary structure-activity relationship (SAR) studies led to the discovery of potent, and orally bioavailable piperidine-aryl urea-based SCD1 inhibitors. 4-(2-Chlorophenoxy)-N-[3-(methyl carbamoyl)phenyl]piperidine-1-carboxamide 4c exhibited robust in vivo activity with dose-dependent desaturation index lowering effects.
View Article and Find Full Text PDFXanthines and xanthine-like DPP-IV inhibitors were first disclosed in 2002. Since then, several dozen accounts of xanthine-based DPP-IV inhibitors have been published. Only a few presentations and journal articles have appeared, with the vast majority of information coming from the patent literature.
View Article and Find Full Text PDFA series of xanthine mimetics containing 5,5 and 5,6 heterocycle fused imidazoles were synthesized as dipeptidyl peptidase IV inhibitors. Compound 7 is potent (h-DPPIV K(i)=2nM) and exhibits excellent selectivity and no species specificity against rat and human enzymes. The X-ray structure confirms that the binding mode of 7 to rat DPPIV is similar to the parent xanthines.
View Article and Find Full Text PDFThe structure-activity relationships of 5,6-positions of aminopyridine carboxamide-based c-Jun N-terminal Kinase (JNK) inhibitors were explored to expand interaction with the kinase specificity and ribose-binding pockets. The syntheses of analogues and the impact of structural modification on in vitro potency and cellular activity are described.
View Article and Find Full Text PDFThe discovery and pharmacological evaluation of potent, selective, and orally bioavailable growth hormone secretagogue receptor (GHS-R) antagonists are reported. Previously, 2,4-diaminopyrimidine-based GHS-R antagonists reported from our laboratories have been shown to be dihydrofolate reductase (DHFR) inhibitors. By comparing the X-ray crystal structure of DHFR docked with our GHS-R antagonists and GHS-R modeling, we designed and synthesized a series of potent and DHFR selective GHS-R antagonists with good pharmacokinetic (PK) profiles.
View Article and Find Full Text PDFC-Jun NH2 terminal kinases (JNKs) are important cell signaling enzymes. JNK1 plays a central role in linking obesity and insulin resistance. JNK2 and JNK3 may be involved in inflammatory and neurological disorders, respectively.
View Article and Find Full Text PDFThe c-Jun N-terminal kinases (JNK-1, -2, and -3) are members of the mitogen activated protein (MAP) kinase family of enzymes. They are activated in response to certain cytokines, as well as by cellular stresses including chemotoxins, peroxides, and irradiation. They have been implicated in the pathology of a variety of different diseases with an inflammatory component including asthma, stroke, Alzheimer's disease, and type 2 diabetes mellitus.
View Article and Find Full Text PDFGhrelin, a gut-derived orexigenic hormone, is an endogenous ligand of the growth hormone secretagogue receptor (GHS-R). Centrally administered ghrelin has been shown to cause hunger and increase food intake in rodents. Inhibition of ghrelin actions with ghrelin antibody, peptidyl GHS-R antagonists, and antisense oligonucleosides resulted in weight loss and food intake decrease in rodents.
View Article and Find Full Text PDFThe synthesis and structure-activity relationships of the 4- and 6-substituents of 2,4-diaminopyrimidine-based growth hormone secretagogue receptor (GHS-R) antagonists are described. Diaminopyrimidines with 6-norbornenyl (4n) and 6-tetrahydrofuranyl (4p) substitutents were found to exhibit potent GHS-R antagonism and good selectivity (approximately 1000-fold) against dihydrofolate reductase.
View Article and Find Full Text PDF[reaction: see text] Purines, xanthines, and other fused imidazoles can be prepared from amidines or guanidines, with retrosynthetic disconnection at the ring fusion. Ring closure proceeds using Cu(I), with no special ligands required. The method allows for easy modification of the heterocyclic nucleus and is tolerant of functionality pendant to the ring system.
View Article and Find Full Text PDFThe structure-activity relationship studies on a series of tetralin carboxamide growth hormone secretagogue receptor (GHS-R) antagonists are discussed. It was found that certain 2-alkoxycarbonylamino substituted tetralin carboxamides are potent, selective, and orally bioavailable GHS-R antagonists.
View Article and Find Full Text PDFDiabetes is a prevalent disease which effects over 150 million people worldwide and there is a great medical need for new therapeutic agents to treat it. Inhibition of protein tyrosine phosphatase 1B (PTP1B) has emerged as a highly validated, attractive target for treatment of not only diabetes but also obesity. Discovery of small-molecule inhibitors has been pursued extensively in both academia and industry and a number of very potent and selective inhibitors have been identified.
View Article and Find Full Text PDFBioorg Med Chem Lett
November 2004
Guided by X-ray crystallography, we have extended the structure-activity relationship (SAR) study on an isoxazole carboxylic acid-based PTP1B inhibitor (1) and more potent and equally selective (>20-fold selectivity over the highly homologous T-cell PTPase, TCPTP) PTP1B inhibitors were identified. Inhibitor 7 demonstrated good cellular activity against PTP1B in COS 7 cells.
View Article and Find Full Text PDFMonoacid-based PTP1B inhibitors with improved physiochemical properties have been investigated. A (2-hydroxy-phenoxy) acetic acid-based phosphotyrosyl mimetic has been linked with an optimized second arylphosphate binding site ligand to produce compound 20 with low micromolar potency against PTP1B, good selectivity over TCPTP (20-fold) and high cell permeability in the Caco-2 system.
View Article and Find Full Text PDFProtein tyrosine phosphatase (PTPase) 1B (PTP1B) has been implicated as a key negative regulator of both insulin and leptin signaling cascades. We identified several salicylic acid-based ligands for the second phosphotyrosine binding site of PTP1B using a NMR-based screening. Structure-based linking with a catalytic site-directed oxalylarylaminobenzoic acid-based pharmacophore led to the identification of a novel series of potent PTP1B inhibitors exhibiting 6-fold selectivity over the highly homologous T-cell PTPase (TCPTP) and high selectivity over other phosphatases.
View Article and Find Full Text PDFWe have previously reported a novel series of oxalyl-aryl-amino benzoic acid-based, catalytic site-directed, competitive, reversible protein tyrosine phosphatase 1B (PTP1B) inhibitors. With readily access to key intermediates, we utilized a solution phase parallel synthesis approach and rapidly identified a highly potent PTP1B inhibitor (19, K(i)=76 nM) with moderate selectivity (5-fold) over T-cell PTPase (TCPTP) through interacting with a second phosphotyrosine binding site (site 2) in the close proximity to the catalytic site.
View Article and Find Full Text PDFProtein Tyrosine phosphatase 1B (PTP1B) has been implicated as a key negative regulator of both insulin and leptin signaling pathways. Using an NMR-based screening approach with 15N- and 13C-labeled PTP1B, we have identified 2,3-dimethylphenyloxalylaminobenzoic acid (1) as a general, reversible, and competitive PTPase inhibitor. Structure-based approach guided by X-ray crystallography facilitated the development of 1 into a novel series of potent and selective PTP1B inhibitors occupying both the catalytic site and a portion of the noncatalytic, second phosphotyrosine binding site.
View Article and Find Full Text PDFProtein tyrosine phosphatase 1B (PTP1B) is an enzyme that downregulates the insulin receptor. Inhibition of PTP1B is expected to improve insulin action, and the design of small molecule PTP1B inhibitors to treat type II diabetes has received considerable attention. In this work, NMR-based screening identified a nonselective competitive inhibitor of PTP1B.
View Article and Find Full Text PDF