Tagged Colorado potato beetles (CPB), Leptinotarsa decemlineata (Say), were released on potato plants, Solanum tuberosum L., and tracked using a portable harmonic radar system to determine the impact of host plant spatial distribution on the tendency of the pest to remain on the colonized host plant or patch. Results confirmed the long residency time on the host plant and showed that close connection of the plant to neighboring plants hastened dispersal between plants.
View Article and Find Full Text PDFThe time-varying magnetic fields used in magnetic resonance applications result in the induction of eddy currents on conductive structures in the vicinity of both the sample under investigation and the gradient coils. These eddy currents typically result in undesired degradations of image quality for MRI applications. Their ubiquitous nature has resulted in the development of various approaches to characterize and minimize their impact on image quality.
View Article and Find Full Text PDFA distributed hot-wire anemometer based on Brillouin optical time-domain analysis is presented. The anemometer is created by passing a current through a stainless steel tube fibre bundle and monitoring Brillouin frequency changes in the presence of airflow. A wind tunnel is used to provide laminar airflow while the device response is calibrated against theoretical models.
View Article and Find Full Text PDFCurrent methods of estimating the Brillouin frequency shift in Brillouin optical time domain analysis sensors are based on curve-fitting techniques. These techniques apply the same weight to all portions of the curve and dutifully fit into the peak and noisy ends of the curve. This makes them very sensitive to noise, initialization of fitting parameters, symmetry, and start and stop frequencies.
View Article and Find Full Text PDFBackground: In pest management research, harmonic radar systems have been largely used to study insect movement across open or vegetation-poor areas because the microwave signal is attenuated by the high water content of vegetation. This study evaluated whether the efficacy of this technology is sufficient to track insects in vegetative landscapes.
Results: Field efficacy data were collected using portable harmonic microwave radar and electronic dipole tags mounted on adults of three economically important pests: Leptinotarsa decemlineata (Say), Diabrotica virgifera virgifera (LeConte) [corrected] and Conotrachelus nenuphar Herbst.
Unilateral magnetic resonance (UMR) has become, in different research areas, a powerful tool to interrogate samples of arbitrary size. Numerous designs have been suggested in the literature to produce the desired magnetic field distributions, including designs which feature constant magnetic field gradients suitable for diffusion and profiling experiments. This work presents a new approach which features extended constant magnetic field gradients with a three magnet array.
View Article and Find Full Text PDFWe present the design and construction of a single sided magnet array generating a homogeneous field in a remote volume. The compact array measures 11.5 cm by 10 cm by 6 cm and weights approximately 5 kg.
View Article and Find Full Text PDFThe design and construction of a unilateral NMR (UMR) magnet assembly for near-surface 1D profiling is presented. The arrangement consists of a single permanent magnet topped with a shaped iron pole cap. The analytically determined profile of the pole cap shapes the field over the magnet, giving a constant gradient of 31 G/cm over a 8mm depth at a 1H frequency of 4.
View Article and Find Full Text PDFWhen fluid saturated porous media are subjected to an applied uniform magnetic field, an internal magnetic field, inside the pore space, is induced due to magnetic susceptibility differences between the pore-filling fluid and the solid matrix. The microscopic distribution of the internal magnetic field, and its gradients, was simulated based on the thin-section pore structure of a sedimentary rock. The simulation results were verified experimentally.
View Article and Find Full Text PDFTraditionally, unilateral NMR systems such as the NMR-MOUSE have used the fringe field between two bar magnets joined with a yoke in a 'U' geometry. This allows NMR signals to be acquired from a sensitive volume displaced from the magnets, permitting large samples to be investigated. The drawback of this approach is that the static field (B0) generated in this configuration is inhomogeneous, and has a large, nonlinear, gradient.
View Article and Find Full Text PDFThe results of a magnetic resonance imaging (MRI) investigation concerning the effects of an aluminum honeycomb sandwich panel on the B1 and B0 fields and on subsequent image quality are presented. Although the sandwich panel structure, representative of an aircraft composite material, distorts B0 and attenuates B1, distortion-free imaging is possible using single point (constant time) imaging techniques. A new expression is derived for the error caused by gradient field distortion due to the heterogeneous magnetic susceptibility within a sample and this error is shown not to cause geometric distortion in the image.
View Article and Find Full Text PDF