Publications by authors named "Bruce E Maryanoff"

The gut microbiome is a malleable microbial community that can remodel in response to various factors, including diet, and contribute to the development of several chronic diseases, including atherosclerosis. We devised an in vitro screening protocol of the mouse gut microbiome to discover molecules that can selectively modify bacterial growth. This approach was used to identify cyclic D,L-α-peptides that remodeled the Western diet (WD) gut microbiome toward the low-fat-diet microbiome state.

View Article and Find Full Text PDF

There is great interest in developing new modes of therapy for atherosclerosis to treat coronary heart disease and stroke, particularly ones that involve modulation of high-density lipoproteins (HDLs). Here, we describe a new supramolecular chemotype for altering HDL morphology and function. Guided by rational design and SAR-driven peptide sequence enumerations, we have synthesized and determined the HDL remodeling activities of over 80 cyclic d,l-α-peptides.

View Article and Find Full Text PDF

The role of phenotypic assessment in drug discovery is discussed, along with the discovery and development of TOPAMAX (topiramate), a billion-dollar molecule for the treatment of epilepsy and migraine.

View Article and Find Full Text PDF

We have observed that molecular constructs based on multiple apoA-I mimetic peptides attached to a branched scaffold display promising anti-atherosclerosis functions in vitro. Building on these promising results, we now describe chronic in vivo studies to assess anti-atherosclerotic efficacy of HDL-like nanoparticles assembled from a trimeric construct, administered over 10 weeks either ip or orally to LDL receptor-null mice. When dosed ip, the trimer-based nanolipids markedly reduced plasma LDL-cholesterol levels by 40%, unlike many other apoA-I mimetic peptides, and were substantially atheroprotective.

View Article and Find Full Text PDF

Broad-spectrum anticonvulsants are of considerable interest as antiepileptic drugs, especially because of their potential for treating refractory patients. Such "neurostabilizers" have also been used to treat other neurological disorders, including migraine, bipolar disorder, and neuropathic pain. We synthesized a series of sulfamide derivatives (4-9, 10a-i, 11a, 11b, 12) and evaluated their anticonvulsant activity.

View Article and Find Full Text PDF

Certain amphipathic α-helical peptides can functionally mimic many of the properties of full-length apolipoproteins, thereby offering an approach to modulate high-density lipoprotein (HDL) for combating atherosclerosis. In this Perspective, we summarize the key findings and advances over the past 25 years in the development of peptides that mimic apolipoproteins, especially apolipoprotein A-I (apoA-I). This assemblage of information provides a reasonably clear picture of the state of the art in the apolipoprotein mimetic field, an appreciation of the potential for such agents in pharmacotherapy, and a sense of the opportunities for optimizing the functional properties of HDL.

View Article and Find Full Text PDF

We describe an approach for engineering peptide-lipid nanoparticles that function similarly to high-density lipoprotein (HDL). Branched, multivalent constructs, bearing multiple 23- or 16-amino-acid peptides, were designed, synthesized, and combined with phospholipids to produce nanometer-scale discoidal HDL-like particles. A variety of biophysical techniques were employed to characterize the constructs, including size exclusion chromatography, analytical ultracentrifuge sedimentation, circular dichroism, transmission electron microscopy, and fluorescence spectroscopy.

View Article and Find Full Text PDF

Inhibitors of ketohexokinase (KHK) have potential for the treatment of diabetes and obesity. We have continued studies on a pyrimidinopyrimidine series of potent KHK inhibitors by exploring the 2-position substituent (R(3)) that interacts with Asp-27B in the ATP-binding region of KHK (viz. 1, 2; Table 1).

View Article and Find Full Text PDF

Cystic fibrosis (CF) is a loss-of-function disease caused by mutations in the CF transmembrane conductance regulator (CFTR) protein, a chloride ion channel that localizes to the apical plasma membrane of epithelial cells. The most common form of the disease results from the deletion of phenylalanine-508 (ΔF508), leading to the accumulation of CFTR in the endoplasmic reticulum with a concomitant loss of chloride flux. We discovered that cyclic tetrapeptides, such as 11, 14, and 15, are able to correct the trafficking defect and restore cell surface activity of ΔF508-CFTR.

View Article and Find Full Text PDF

Attenuation of fructose metabolism by the inhibition of ketohexokinase (KHK; fructokinase) should reduce body weight, free fatty acids, and triglycerides, thereby offering a novel approach to treat diabetes and obesity in response to modern diets. We have identified potent, selective inhibitors of human hepatic KHK within a series of pyrimidinopyrimidines (1). For example, 8, 38, and 47 exhibited KHK IC50 values of 12, 7, and 8 nM, respectively, and also showed potent cellular KHK inhibition (IC50 < 500 nM), which relates to their intrinsic potency vs KHK and their ability to penetrate cells.

View Article and Find Full Text PDF

We have identified RWJ-671818 (8) as a novel, low molecular weight, orally active inhibitor of human alpha-thrombin (K(i) = 1.3 nM) that is potentially useful for the acute and chronic treatment of venous and arterial thrombosis. In a rat deep venous thrombosis model used to assess antithrombotic efficacy, oral administration of 8 at 30 and 50 mg/kg reduced thrombus weight by 87 and 94%, respectively.

View Article and Find Full Text PDF

Whereas heparin functions as an antithrombotic agent by promoting antithrombin III-based inhibition of thrombin and factor Xa, there is less appreciation for the combination behavior with small-molecule, direct inhibitors of these proteases. We conducted a study in a high-shear arterial environment to explore the potential for a cooperative antithrombotic effect with a thrombin inhibitor (argatroban), a factor Xa inhibitor (YM-60828), and a dual thrombin/factor Xa inhibitor (RWJ-445167). We employed a platelet-dependent vascular injury model in which rats were subjected to an acute electrical injury to the carotid artery.

View Article and Find Full Text PDF

Rationale: Mast cells and neutrophils are key contributors to the pathophysiological inflammatory processes that underpin asthma and chronic obstructive pulmonary disease, partly through the release of noxious serine proteases, including cathepsin G (Cat G) and chymase. From this standpoint, a dual inhibitor of neutrophil Cat G and mast cell chymase could protect against these disease-related inflammatory responses.

Objectives: We examined the antiinflammatory pharmacology of RWJ-355871, a dual inhibitor of Cat G and chymase, in animal models of inflammation that evince pathophysiological pathways relevant to asthma and chronic obstructive pulmonary disease to determine the therapeutic potential of this compound.

View Article and Find Full Text PDF

TOPAMAX((R)) (topiramate) 1, is a broad-spectrum anticonvulsant that has been marketed worldwide for the treatment of epilepsy and migraine. We discovered this blockbuster drug serendipitously in a project that originally sought a new antidiabetic agent. Topiramate has useful neurological effects that derive from multiple CNS mechanisms of action, but it is basically a "neurostabilizer" by virtue of attenuating the excitability of brain neuronal pathways.

View Article and Find Full Text PDF

We have discovered two related chemical series of nonpeptide urotensin-II (U-II) receptor antagonists based on piperazino-phthalimide (5 and 6) and piperazino-isoindolinone (7) scaffolds. These structure types are distinctive from those of U-II receptor antagonist series reported in the literature. Antagonist 7a exhibited single-digit nanomolar potency in rat and human cell-based functional assays, as well as strong binding to the human U-II receptor.

View Article and Find Full Text PDF

In seeking broad-spectrum anticonvulsants to treat epilepsy and other neurological disorders, we synthesized and tested a group of sulfamide derivatives (4a-k, 5), which led to the clinical development of 4a (JNJ-26990990). This compound exhibited excellent anticonvulsant activity in rodents against audiogenic, electrically induced, and chemically induced seizures, with very weak inhibition of human carbonic anhydrase-II (IC(50) = 110 microM). The pharmacological profile for 4a supports its potential in the treatment of multiple forms of epilepsy, including pharmacoresistant variants.

View Article and Find Full Text PDF