Publications by authors named "Bruce E Herring"

Glutamatergic synapses exhibit significant molecular diversity, but circuit-specific mechanisms that underlie synaptic regulation are not well characterized. Prior reports show that Rho-guanine nucleotide exchange factor (RhoGEF) Tiam1 regulates perforant path→dentate gyrus granule neuron synapses. In the present study, we report Tiam1's homolog Tiam2 is implicated in glutamatergic neurotransmission in CA1 pyramidal neurons.

View Article and Find Full Text PDF

Background: Glutamatergic synapse dysfunction is believed to underlie the development of Autism Spectrum Disorder (ASD) and Intellectual Disability (ID) in many individuals. However, identification of genetic markers that contribute to synaptic dysfunction in these individuals is notoriously difficult. Based on genomic analysis, structural modeling, and functional data, we recently established the involvement of the TRIO-RAC1 pathway in ASD and ID.

View Article and Find Full Text PDF

Many glutamatergic synapse proteins contain a 4.1N protein binding domain. However, a role for 4.

View Article and Find Full Text PDF

Neural circuits, which constitute the substrate for brain processing, can be traced in the retrograde direction, from postsynaptic to presynaptic cells, using methods based on introducing modified rabies virus into genetically marked cell types. These methods have revolutionized the field of neuroscience. However, similarly reliable, transsynaptic, and non-toxic methods to trace circuits in the anterograde direction are not available.

View Article and Find Full Text PDF

Mutations in the putative glutamatergic synapse scaffolding protein SAP97 are associated with the development of schizophrenia in humans. However, the role of SAP97 in synaptic regulation is unclear. Here we show that SAP97 is expressed in the dendrites of granule neurons in the dentate gyrus but not in the dendrites of other hippocampal neurons.

View Article and Find Full Text PDF

We recently identified an autism spectrum disorder/intellectual disability (ASD/ID)-related mutation hotspot in the Rac1-activating GEF1 domain of the protein Trio. Trio is a Rho guanine nucleotide exchange factor (RhoGEF) that is essential for glutamatergic synapse function. An ASD/ID-related mutation identified in Trio's GEF1 domain, Trio D1368V, produces a pathologic increase in glutamatergic synaptogenesis, suggesting that Trio is coupled to synaptic regulatory mechanisms that govern glutamatergic synapse formation.

View Article and Find Full Text PDF

While efficient methods are well established for studying postsynaptic protein regulation of glutamatergic synapses in the mammalian central nervous system, similarly efficient methods are lacking for studying proteins regulating presynaptic function. In the present study, we introduce an optical/electrophysiological method for investigating presynaptic molecular regulation. Here, using an optogenetic approach, we selectively stimulate genetically modified presynaptic CA3 pyramidal neurons in the hippocampus and measure optically-induced excitatory postsynaptic currents produced in unmodified postsynaptic CA1 pyramidal neurons.

View Article and Find Full Text PDF

Changes in the actin cytoskeleton are a primary mechanism mediating the morphological and functional plasticity that underlies learning and memory. The synaptic Ras homologous (Rho) guanine nucleotide exchange factors (GEFs) Kalirin and Trio have emerged as central regulators of actin dynamics at the synapse. The increased attention surrounding Kalirin and Trio stems from the growing evidence for their roles in the etiology of a wide range of neurodevelopmental and neurodegenerative disorders.

View Article and Find Full Text PDF
Article Synopsis
  • - The RhoGEFs Kalirin-7 and Trio play important roles in synaptic plasticity, and their dysfunction is linked to various neurodevelopmental and neurodegenerative disorders.
  • - Through unbiased proteomics, researchers identified the distinct protein interaction networks for Kalirin-7 and Trio, finding that Trio is associated with axon guidance and presynaptic complexes, while Kalirin-7 interacts more with synaptic adhesion proteins.
  • - The study highlights Kalirin-7's specific interaction with neuroligin-1 (NLGN1), showing that this interaction is crucial for NLGN1's role in synaptic function, thus unveiling new insights into the mechanisms of these disease-related proteins.
View Article and Find Full Text PDF

Mounting evidence suggests numerous glutamatergic synapse subtypes exist in the brain, and that these subtypes are likely defined by unique molecular regulatory mechanisms. Recent work has identified substantial divergence of molecular composition between commonly studied Schaffer collateral synapses and perforant path-dentate gyrus (DG) synapses of the hippocampus. However, little is known about the molecular mechanisms that may confer unique properties to perforant path-DG synapses.

View Article and Find Full Text PDF
Article Synopsis
  • Primary microcephaly is linked to mutations in genes like WDR62 and KIF2A, but understanding its mechanisms is still challenging.
  • Research using mutant mice and human brain organoids showed that deleting WDR62 reduces brain and organoid size by affecting neural progenitor cells (NPCs), particularly outer radial glia (oRG).
  • The study uncovered that WDR62 works with CEP170 to affect cilium disassembly and NPC proliferation, suggesting that the disruption of this function contributes to microcephaly.
View Article and Find Full Text PDF

The small GTPase Rac1 promotes actin polymerization and plays a critical and increasingly appreciated role in the development and plasticity of glutamatergic synapses. Growing evidence suggests that disruption of the Rac1 signaling pathway at glutamatergic synapses contributes to Autism Spectrum Disorder/intellectual disability (ASD/ID)-related behaviors seen in animal models of ASD/ID. Rac1 has also been proposed as a strong candidate of convergence for many factors implicated in the development of ASD/ID.

View Article and Find Full Text PDF

The Rho guanine nucleotide exchange factor (RhoGEF) Trio promotes actin polymerization by directly activating the small GTPase Rac1. Recent studies suggest that autism spectrum disorder (ASD)-related behavioral phenotypes in animal models of ASD can be produced by dysregulation of Rac1's control of actin polymerization at glutamatergic synapses. Here, in humans, we discover a large cluster of ASD-related de novo mutations in Trio's Rac1 activating domain, GEF1.

View Article and Find Full Text PDF

For more than 20 years, we have known that Ca(2+)/calmodulin-dependent protein kinase (CaMKII) activation is both necessary and sufficient for the induction of long-term potentiation (LTP). During this time, tremendous effort has been spent in attempting to understand how CaMKII activation gives rise to this phenomenon. Despite such efforts, there is much to be learned about the molecular mechanisms involved in LTP induction downstream of CaMKII activation.

View Article and Find Full Text PDF

The molecular mechanism underlying long-term potentiation (LTP) is critical for understanding learning and memory. CaMKII, a key kinase involved in LTP, is both necessary and sufficient for LTP induction. However, how CaMKII gives rise to LTP is currently unknown.

View Article and Find Full Text PDF

Unlabelled: Recent evidence has resurrected the idea that the amino acid aspartate, a selective NMDA receptor agonist, is a neurotransmitter. Using a mouse that lacks the glutamate-selective vesicular transporter VGLUT1, we find that glutamate alone fully accounts for the activation of NMDA receptors at excitatory synapses in the hippocampus. This excludes a role for aspartate and, by extension, a recently proposed role for the sialic acid transporter sialin in excitatory transmission.

View Article and Find Full Text PDF

A fundamental and still largely unresolved question is how neurons achieve rapid delivery of selected signaling receptors throughout the elaborate dendritic arbor. Here we show that this requires a conserved sorting machinery called retromer. Retromer-associated endosomes are distributed within dendrites in ∼2 μm intervals and supply frequent membrane fusion events into the dendritic shaft domain immediately adjacent to (<300 nm from) the donor endosome and typically without full endosome discharge.

View Article and Find Full Text PDF

Neuroligins are postsynaptic cell adhesion molecules that are important for synaptic function through their trans-synaptic interaction with neurexins (NRXNs). The localization and synaptic effects of neuroligin-1 (NL-1, also called NLGN1) are specific to excitatory synapses with the capacity to enhance excitatory synapses dependent on synaptic activity or Ca(2+)/calmodulin kinase II (CaMKII). Here we report that CaMKII robustly phosphorylates the intracellular domain of NL-1.

View Article and Find Full Text PDF

The extensive dendritic arbor of a pyramidal cell introduces considerable complexity to the integration of synaptic potentials. Propagation of dendritic potentials is largely passive, in contrast to regenerative axonal potentials that are maintained by voltage-gated sodium channels, leading to a declination in amplitude as dendritic potentials travel toward the soma in a manner that disproportionally affects distal synaptic inputs. To counteract this amplitude filtering, Schaffer collateral synapses onto CA1 pyramidal cells contain a varying number of AMPA receptors (AMPARs) per synapse that increases with distance from the soma, a phenomenon known as distance-dependent scaling.

View Article and Find Full Text PDF

Cornichon-2 and cornichon-3 (CNIH-2/-3) are AMPA receptor (AMPAR) binding proteins that promote receptor trafficking and markedly slow AMPAR deactivation in heterologous cells, but their role in neurons is unclear. Using CNIH-2 and CNIH-3 conditional knockout mice, we find a profound reduction of AMPAR synaptic transmission in the hippocampus. This deficit is due to the selective loss of surface GluA1-containing AMPARs (GluA1A2 heteromers), leaving a small residual pool of synaptic GluA2A3 heteromers.

View Article and Find Full Text PDF

General anesthetics produce anesthesia by depressing central nervous system activity. Activation of inhibitory GABA(A) receptors plays a central role in the action of many clinically relevant general anesthetics. Even so, there is growing evidence that anesthetics can act at a presynaptic locus to inhibit neurotransmitter release.

View Article and Find Full Text PDF

AMPA receptors (AMPARs) mediate the majority of fast excitatory neurotransmission, and their density at postsynaptic sites determines synaptic strength. Ubiquitination is a posttranslational modification that dynamically regulates the synaptic expression of many proteins. However, very few of the ubiquitinating enzymes implicated in the process have been identified.

View Article and Find Full Text PDF

The mechanism of general anaesthetic action is only partially understood. Facilitation of inhibitory GABAA receptors plays an important role in the action of most anaesthetics, but is thought to be especially relevant in the case of intravenous anaesthetics, like etomidate and propofol. Recent evidence suggests that anaesthetics also inhibit excitatory synaptic transmission via a presynaptic mechanism(s), but it has been difficult to determine whether these agents act on the neurotransmitter release machinery itself.

View Article and Find Full Text PDF

Despite their importance, the mechanism of action of general anesthetics is still poorly understood. Facilitation of inhibitory GABA(A) receptors plays an important role in anesthesia, but other targets have also been linked to anesthetic actions. Anesthetics are known to suppress excitatory synaptic transmission, but it has been difficult to determine whether they act on the neurotransmitter release machinery itself.

View Article and Find Full Text PDF

Background: SNAP-25 is a synaptic protein known to be involved in exocytosis of synaptic vesicles in neurons and of large dense-core vesicles in neuroendocrine cells. Its role in exocytosis has been studied in SNAP-25 knockout mice, in lysed synaptosomes lacking functional SNAP-25 and in cells after treatment with botulinum toxins A or E that specifically cleave SNAP-25. These studies have shown that SNAP-25 appears to be required for most but not all evoked secretion.

View Article and Find Full Text PDF