ACS Appl Mater Interfaces
September 2019
Supported lipid bilayers are essential model systems for studying biological membranes and for membrane-based sensor development. Surface-enhanced Raman spectroscopy (SERS) stands to add considerably to our understanding of the dynamics and interactions of these systems through direct chemical information. Despite this potential, SERS of lipid bilayers is not routinely achieved.
View Article and Find Full Text PDFThe electromigration behaviour of raw and acid purified single walled carbon nanotubes (SWCNTs) in dilute aqueous systems (0.0034 mg mL), in the absence of surfactant, with the addition of either 0.85 M acetic acid or 0.
View Article and Find Full Text PDFThe Billups-Birch Reduction chemistry has been shown to functionalize single-walled carbon nanotubes (SWCNTs) without damaging the sidewalls, but has challenges in scalability. Currently published work uses a large mole ratio of Li to carbon atoms in the SWCNT (Li:C) to account for lithium amide formation, however this increases the cost and hazard of the reaction. We report here the systematic understanding of the effect of various parameters on the extent of functionalization using resonant Raman spectroscopy.
View Article and Find Full Text PDFAs a result of the unique physical and electrical properties, graphene continues to attract the interest of a large segment of the scientific community. Since graphene does not occur naturally, the ability to exfoliate and isolate individual layers of graphene from graphite is an important and challenging process. The interlayer cohesive energy of graphite that results from van der Waals attractions has been determined experimentally to be 61 meV per carbon atom (61 meV/C atom).
View Article and Find Full Text PDFMass spectrometry imaging (MSI) of tissue implanted with silver nanoparticulate (AgNP) matrix generates reproducible imaging of lipids in rodent models of disease and injury. Gas-phase production and acceleration of size-selected 8 nm AgNP is followed by controlled ion beam rastering and soft landing implantation of 500 eV AgNP into tissue. Focused 337 nm laser desorption produces high quality images for most lipid classes in rat brain tissue (in positive mode: galactoceramides, diacylglycerols, ceramides, phosphatidylcholines, cholesteryl ester, and cholesterol, and in negative ion mode: phosphatidylethanolamides, sulfatides, phosphatidylinositol, and sphingomyelins).
View Article and Find Full Text PDFThis paper introduces Teslaphoresis, the directed motion and self-assembly of matter by a Tesla coil, and studies this electrokinetic phenomenon using single-walled carbon nanotubes (CNTs). Conventional directed self-assembly of matter using electric fields has been restricted to small scale structures, but with Teslaphoresis, we exceed this limitation by using the Tesla coil's antenna to create a gradient high-voltage force field that projects into free space. CNTs placed within the Teslaphoretic (TEP) field polarize and self-assemble into wires that span from the nanoscale to the macroscale, the longest thus far being 15 cm.
View Article and Find Full Text PDFThe hydrogenation of commercial graphite using lithium/ammonia as the reducing agent and tert-butyl alcohol as a proton source was investigated. Characterization of the products after successive reductions of the same material by high-resolution transmission electron microscopy revealed a new material that was replete with edge and circular dislocations. Analysis by solid-state (13)C NMR spectroscopy indicates that after three reductions, the remaining aromatic rings appear to be interior benzene rings.
View Article and Find Full Text PDFThe growth of a continuous, uniform Au layer on a dielectric nanoparticle is the critical step in the synthesis of nanoparticles such as nanoshells or nanorice, giving rise to their unique geometry-dependent plasmon resonant properties. Here, we report a novel, streamlined method for Au layer metallization on prepared nanoparticle surfaces using carbon monoxide as the reducing agent. This approach consistently yields plasmonic nanoparticles with highly regular shell layers and is immune to variations in precursor or reagent preparation.
View Article and Find Full Text PDFMeasurements of near-infrared scattered circular polarization Raman optical activity (SCP-ROA) are presented using laser excitation at 780 nm for samples of S-(-)-alpha-pinene and L-alanyl-L-alanine. These are the first measurements of ROA outside the blue-to-green visible region between 488 and 532 nm. Comparison of Raman and ROA intensities measured with excitation at 532 and 780 nm demonstrate that the expected frequency to the fourth-power dependence for Raman scattering and the corresponding fifth-power dependence for ROA are observed.
View Article and Find Full Text PDF