Free radicals produce in DNA a large variety of base and deoxyribose lesions that are corrected by the base excision DNA repair (BER) system. However, the C1'-oxidized abasic residue 2-deoxyribonolactone (dL) traps DNA repair lyases in covalent DNA-protein crosslinks (DPC), including the core BER enzyme DNA polymerase beta (Polβ). Polβ-DPC are rapidly processed in mammalian cells by proteasome-dependent digestion.
View Article and Find Full Text PDFThe apurinic/apyrimidinic endodeoxyribonuclease 1 (APE1) is an essential enzyme of the base excision repair pathway of non-distorting DNA lesions. In response to genotoxic treatments, APE1 is highly secreted (sAPE1) in association with small-extracellular vesicles (EVs). Interestingly, its presence in the serum of patients with hepatocellular or non-small-cell-lung cancers may represent a prognostic biomarker.
View Article and Find Full Text PDFAfter cellular differentiation, nuclear DNA is no longer replicated, and many of the associated proteins are downregulated accordingly. These include the structure-specific endonucleases Fen1 and DNA2, which are implicated in repairing mitochondrial DNA (mtDNA). Two more such endonucleases, named MGME1 and ExoG, have been discovered in mitochondria.
View Article and Find Full Text PDFAntioxidants (Basel)
September 2022
Apurinic/apyrimidinic endonuclease 1/redox effector-1 (Ape1/Ref-1) is the major apurinic/apyrimidinic (AP) endonuclease in mammalian cells. It functions mainly in the base excision repair pathway to create a suitable substrate for DNA polymerases. Human Ape1 protein can activate some transcription factors to varying degrees, dependent on its N-terminal, unstructured domain, and some of the cysteines within it, apparently via a redox mechanism in some cases.
View Article and Find Full Text PDFFree radical attack on C1' of deoxyribose forms the oxidized abasic (AP) site 2-deoxyribonolactone (dL). In vitro, dL traps the major base excision DNA repair enzyme DNA polymerase beta (Polβ) in covalent DNA-protein crosslinks (DPC) via the enzyme's N-terminal lyase activity acting on 5'-deoxyribose-5-phosphate residues. We previously demonstrated formation of Polβ-DPC in cells challenged with oxidants generating significant levels of dL.
View Article and Find Full Text PDFThere exist two major base excision DNA repair (BER) pathways, namely single-nucleotide or "short-patch" (SP-BER), and "long-patch" BER (LP-BER). Both pathways appear to be involved in the repair of small base lesions such as uracil, abasic sites and oxidized bases. In addition to DNA polymerase β (Polβ) as the main BER enzyme for repair synthesis, there is evidence for a minor role for DNA polymerase lambda (Polλ) in BER.
View Article and Find Full Text PDFLoss of telomeres stability is a hallmark of cancer cells. Exposed telomeres are prone to aberrant end-joining reactions leading to chromosomal fusions and translocations. Human telomeres contain repeated TTAGGG elements, in which the 3' exposed strand may adopt a G-quadruplex (G4) structure.
View Article and Find Full Text PDFThere is growing evidence of immunotoxicity related to exposure to toxic trace metals, and an examination of gene expression patterns in peripheral blood samples may provide insights into the potential development of these outcomes. This pilot study aimed to correlate the blood levels of three heavy metals (mercury, cadmium, and lead) with differences in gene expression in 24 participants from the Long Island Study of Seafood Consumption. We measured the peripheral blood mRNA expression of 98 genes that are implicated in stress, toxicity, inflammation, and autoimmunity.
View Article and Find Full Text PDFPrevious missions to the lunar surface implicated potential dangers of lunar soil. In future explorations, astronauts may spend weeks or months on the Moon, increasing the risk of inhaling lunar dust. In an effort to understand the biological impact of lunar regolith, cell cultures derived from lung or neuronal cells were challenged with lunar soil simulants to assess cell survival and genotoxicity.
View Article and Find Full Text PDFApe1 is the major apurinic/apyrimidinic (AP) endonuclease activity in mammalian cells, and a key factor in base-excision repair of DNA. High expression or aberrant subcellular distribution of Ape1 has been detected in many cancer types, correlated with drug response, tumor prognosis, or patient survival. Here we present evidence that Ape1 facilitates BRCA1-mediated homologous recombination repair (HR), while counteracting error-prone non-homologous end joining of DNA double-strand breaks.
View Article and Find Full Text PDFSince the discovery of the base excision repair (BER) system for DNA more than 40 years ago, new branches of the pathway have been revealed at the biochemical level by studies. Largely for technical reasons, however, the confirmation of these subpathways has been elusive. We review methods that have been used to explore BER in mammalian cells, indicate where there are important knowledge gaps to fill, and suggest a way to address them.
View Article and Find Full Text PDFOxygen is both necessary and dangerous for aerobic cell function. ATP is most efficiently made by the electron transport chain, which requires oxygen as an electron acceptor. However, the presence of oxygen, and to some extent the respiratory chain itself, poses a danger to cellular components.
View Article and Find Full Text PDFDNA Repair (Amst)
August 2016
Free radicals generate an array of DNA lesions affecting all parts of the molecule. The damage to deoxyribose receives less attention than base damage, even though the former accounts for ∼20% of the total. Oxidative deoxyribose fragments (e.
View Article and Find Full Text PDFJ Expo Sci Environ Epidemiol
May 2017
Cadmium is a carcinogenic heavy metal. Urinary levels of cadmium are considered to be an indicator of long-term body burden, as cadmium accumulates in the kidneys and has a half-life of at least 10 years. However, the temporal stability of the biomarker in urine samples from a non-occupationally exposed population has not been rigorously established.
View Article and Find Full Text PDFIonizing radiation causes degeneration of myelin, the insulating sheaths of neuronal axons, leading to neurological impairment. As radiation research on the central nervous system has predominantly focused on neurons, with few studies addressing the role of glial cells, we have focused our present research on identifying the latent effects of single/ fractionated -low dose of low/ high energy radiation on the role of base excision repair protein Apurinic Endonuclease-1, in the rat spinal cords oligodendrocyte progenitor cells' differentiation. Apurinic endonuclease-1 is predominantly upregulated in response to oxidative stress by low- energy radiation, and previous studies show significant induction of Apurinic Endonuclease-1 in neurons and astrocytes.
View Article and Find Full Text PDFFree radical attack on the C1' position of DNA deoxyribose generates the oxidized abasic (AP) site 2-deoxyribonolactone (dL). Upon encountering dL, AP lyase enzymes such as DNA polymerase β (Polβ) form dead-end, covalent intermediates in vitro during attempted DNA repair. However, the conditions that lead to the in vivo formation of such DNA-protein cross-links (DPC), and their impact on cellular functions, have remained unknown.
View Article and Find Full Text PDFThe major mammalian apurinic/apyrimidinic endonuclease Ape1 is a multifunctional protein operating in protection of cells from oxidative stress via its DNA repair, redox, and transcription regulatory activities. The importance of Ape1 has been marked by previous work demonstrating its requirement for viability in mammalian cells. However, beyond a requirement for Ape1-dependent DNA repair activity, deeper molecular mechanisms of the fundamental role of Ape1 in cell survival have not been defined.
View Article and Find Full Text PDFDNA-based nanomechanical devices can be used to characterize the action of DNA-distorting proteins. Here, we have constructed a device wherein two DNA triple-crossover (TX) molecules are connected by a shaft, similar to a previous device that measured the binding free energy of integration host factor. In our case, the binding site on the shaft contains the sequence recognized by SoxR protein, the apo form of which is a transcriptional activator.
View Article and Find Full Text PDFIonizing radiation (IR) and bleomycin (BLM) are used to treat various types of cancers. Both agents generate cytotoxic double strand breaks (DSB) and abasic (apurinic/apyrimidinic (AP)) sites in DNA. The human AP endonuclease Ape1 acts on abasic or 3'-blocking DNA lesions such as those generated by IR or BLM.
View Article and Find Full Text PDFFor many years, the repair of most damage in mitochondrial DNA (mtDNA) was thought limited to short-patch base excision repair (SP-BER), which replaces a single nucleotide by the sequential action of DNA glycosylases, an apurinic/apyrimidinic (AP) endonuclease, the mitochondrial DNA polymerase gamma, an abasic lyase activity, and mitochondrial DNA ligase. However, the likely array of lesions inflicted on mtDNA by oxygen radicals and the possibility of replication errors and disruptions indicated that such a restricted repair repertoire would be inadequate. Recent studies have considerably expanded our knowledge of mtDNA repair to include long-patch base excision repair (LP-BER), mismatch repair, and homologous recombination and nonhomologous end-joining.
View Article and Find Full Text PDFJ Toxicol Environ Health A
February 2010
Numerous environmental carcinogens involve radical formation interacting with DNA to produce 2-deoxyribonolactone (dL), a major type of oxidized abasic site, implicated in DNA strand breaks, mutagenesis, and formation of covalent DNA-protein cross-links (DPC). Studies showed major dL-specific DPC occurred due to reactions with DNA polymerase beta (Polbeta) dependent on native conformation, while other DPC formed involved nonenzymatic reactions of DNA binding proteins with dL lesions. Polbeta appeared to play a major role in alleviating the cytotoxic effects of neocarzinostatin, which was used as a dL-producing agent.
View Article and Find Full Text PDFTranslesion synthesis (TLS) on DNA is a process by which potentially cytotoxic replication-blocking lesions are bypassed, but at the risk of increased mutagenesis. The exact in vivo role of the individual TLS enzymes in Saccharomyces cerevisiae has been difficult to determine from previous studies due to differing results from the variety of systems used. We have generated a series of S.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2009
In enteric bacteria, the cellular response to oxidative stress is activated by oxidation of the iron-sulfur clusters in SoxR, which then induces transcription of soxS, turning on a battery of defense genes. Here we demonstrate both in vitro and in cells that activation of SoxR can occur in a DNA-mediated reaction with guanine radicals, an early genomic signal of oxidative stress, serving as the oxidant. SoxR in its reduced form is found to inhibit guanine damage by repairing guanine radicals.
View Article and Find Full Text PDF