Publications by authors named "Bruce Damer"

Early Mars was likely habitable, but could life actually have started there? While cellular life emerged from prebiotic chemistry through a pre-Darwinian selection process relevant to both Earth and Mars, each planet posed unique selection 'hurdles' to this process. We focus on drivers of selection in prebiotic chemistry generic to Earth-like worlds and specific to Mars, such as an iron-rich surface. Iron, calcium, and magnesium cations are abundant in hydrothermal settings on Earth and Mars, a promising environment for an origin of life.

View Article and Find Full Text PDF

The concept of habitability is now widely used to describe zones in a solar system in which planets with liquid water can sustain life. Because habitability does not explicitly incorporate the origin of life, this article proposes a new word-urability-which refers to the conditions that allow life to begin. The utility of the word is tested by applying it to combinations of multiple geophysical and geochemical factors that support plausible localized zones that are conducive to the chemical reactions and molecular assembly processes required for the origin of life.

View Article and Find Full Text PDF

It is possible that early life relied on RNA polymers that served as ribozyme-like catalysts and for storing genetic information. The source of such polymers is uncertain, but previous investigations reported that wet-dry cycles simulating prebiotic hot springs provide sufficient energy to drive condensation reactions of mononucleotides to form oligomers. The aim of the study reported here was to visualize the products by atomic force microscopy.

View Article and Find Full Text PDF

Two widely-cited alternative hypotheses propose geological localities and biochemical mechanisms for life's origins. The first states that chemical energy available in submarine hydrothermal vents supported the formation of organic compounds and initiated primitive metabolic pathways which became incorporated in the earliest cells; the second proposes that protocells self-assembled from exogenous and geothermally-delivered monomers in freshwater hot springs. These alternative hypotheses are relevant to the fossil record of early life on Earth, and can be factored into the search for life elsewhere in the Solar System.

View Article and Find Full Text PDF

We present a testable hypothesis related to an origin of life on land in which fluctuating volcanic hot spring pools play a central role. The hypothesis is based on experimental evidence that lipid-encapsulated polymers can be synthesized by cycles of hydration and dehydration to form protocells. Drawing on metaphors from the bootstrapping of a simple computer operating system, we show how protocells cycling through wet, dry, and moist phases will subject polymers to combinatorial selection and draw structural and catalytic functions out of initially random sequences, including structural stabilization, pore formation, and primitive metabolic activity.

View Article and Find Full Text PDF

Two processes required for life's origin are condensation reactions that produce essential biopolymers by a nonenzymatic reaction, and self-assembly of membranous compartments that encapsulate the polymers into populations of protocells. Because life today thrives not just in the temperate ocean and lakes but also in extreme conditions of temperature, salinity, and pH, there is a general assumption that any form of liquid water would be sufficient to support the origin of life as long as there are sources of chemical energy and simple organic compounds. We argue here that the first forms of life would be physically and chemically fragile and would be strongly affected by ionic solutes and pH.

View Article and Find Full Text PDF

David Deamer served as editor-in-chief of from 2014 to 2016. [..

View Article and Find Full Text PDF

There is a general assumption that amphiphilic compounds, such as fatty acids, readily form membranous vesicles when dispersed in aqueous phases. However, from earlier studies, it is known that vesicle stability depends strongly on pH, temperature, chain length, ionic concentration and the presence or absence of divalent cations. To test how robust simple amphiphilic compounds are in terms of their ability to assemble into stable vesicles, we chose to study 10- and 12-carbon monocarboxylic acids and a mixture of the latter with its monoglyceride.

View Article and Find Full Text PDF

Enceladus is a target of future missions designed to search for existing life or its precursors. Recent flybys of Enceladus by the Cassini probe have confirmed the existence of a long-lived global ocean laced with organic compounds and biologically available nitrogen. This immediately suggests the possibility that life could have begun and may still exist on Enceladus.

View Article and Find Full Text PDF

Charles Darwin's original intuition that life began in a "warm little pond" has for the last three decades been eclipsed by a focus on marine hydrothermal vents as a venue for abiogenesis. However, thermodynamic barriers to polymerization of key molecular building blocks and the difficulty of forming stable membranous compartments in seawater suggest that Darwin's original insight should be reconsidered. I will introduce the terrestrial origin of life hypothesis, which combines field observations and laboratory results to provide a novel and testable model in which life begins as protocells assembling in inland fresh water hydrothermal fields.

View Article and Find Full Text PDF

Hydrothermal fields on the prebiotic Earth are candidate environments for biogenesis. We propose a model in which molecular systems driven by cycles of hydration and dehydration in such sites undergo chemical evolution in dehydrated films on mineral surfaces followed by encapsulation and combinatorial selection in a hydrated bulk phase. The dehydrated phase can consist of concentrated eutectic mixtures or multilamellar liquid crystalline matrices.

View Article and Find Full Text PDF