Publications by authors named "Bruce D Hilton"

Posaconazole, a clinically useful antifungal agent, has several known oxidative degradation products involving the piperazine ring near the center of the molecule. A novel degradant was recently isolated and characterized spectroscopically as a novel ring-contraction product incorporating a dihydroimidazolium moiety in lieu of the normally present piperazine ring.

View Article and Find Full Text PDF

1H-13C GHSQC and GHMBC spectra are irrefutably among the most valuable 2D NMR experiments for the establishment of unknown chemical structures. However, the indeterminate nature of the length of the long-range coupling(s) observed via the (n)J(CH)-optimized delay of the GHMBC experiment can complicate the interpretation of the data when dealing with novel chemical structures. A priori there is no way to differentiate 2J(CH) from (n)J(CH) correlations, where n ≥ 3.

View Article and Find Full Text PDF

Long-range, two-dimensional heteronuclear shift correlation NMR methods play a pivotal role in the assembly of novel molecular structures. The well-established GHMBC method is a high-sensitivity mainstay technique, affording connectivity information via (n)J(CH) coupling pathways. Unfortunately, there is no simple way of determining the value of n and hence no way of differentiating two-bond from three- and occasionally four-bond correlations.

View Article and Find Full Text PDF

Utilizing (13)C-(13)C connectivity networks for the assembly of carbon skeletons from HSQC-ADEQUATE spectra was recently reported. HSQC-ADEQUATE data retain the resonance multiplicity information of the multiplicity-edited GHSQC spectrum and afford a significant improvement in the signal-to-noise (s/n) ratio relative to the 1,1-ADEQUATE data used in the calculation of the HSQC-ADEQUATE spectrum by unsymmetrical indirect covariance (UIC) processing methods. The initial investigation into the computation of HSQC-ADEQUATE correlation plots utilized overnight acquisition of the 1,1-ADEQUATE data used for the calculation.

View Article and Find Full Text PDF

Various experimental methods have been developed to unequivocally identify vicinal neighbor carbon atoms. Variants of the HMBC experiment intended for this purpose have included 2J3J-HMBC and H2BC. The 1,1-ADEQUATE experiment, in contrast, was developed to accomplish the same goal but relies on the (1) J(CC) coupling between a proton-carbon resonant pair and the adjacent neighbor carbon.

View Article and Find Full Text PDF

Long-range (1)H-(15)N heteronuclear shift correlation experiments at natural abundance are becoming more routinely utilized in the characterization of unknown chemical structures from a diverse range of sources including natural products and pharmaceuticals. Apart from the inherent challenges of the low gyromagnetic ratio and natural abundance of (15)N, investigators are also occasionally hampered by having to deal with the wide spectral range inherent to various nitrogen functional groups, which can exceed 500 ppm. Earlier triple resonance cryoprobe designs typically provided 90° (15)N pulses in the range of 35-40 µs, which did not allow the uniform excitation of wide F(1) spectral ranges for (1)H-(15)N GHMBC spectra.

View Article and Find Full Text PDF

Practical experimental performance limits for an ensemble of heteronuclear 2D NMR experiments using a state-of-the-art 600 MHz 1.7 mm Bruker TCI Micro CryoProbe are reported. In the specific case of multiplicity-edited GHSQC, it was possible to acquire data on a 540 ng sample of strychnine (1; ∼1.

View Article and Find Full Text PDF

Long-range homonuclear coupling pathways can be observed in COSY or GCOSY spectra by the acquisition of spectra with larger numbers of increments of the evolution period, t(1), than would normally be used. Alternatively, covariance processing of COSY-type spectra acquired with modest numbers of t(1) increments, allows the observation of multistage correlations. In this work results obtained from covariance-processed GCOSY spectra are fully analyzed and compared to normally processed COSY and 80 ms TOCSY spectra.

View Article and Find Full Text PDF

Several groups of authors have reported studies in the areas of indirect and unsymmetrical indirect covariance NMR processing methods. Efforts have recently focused on the use of unsymmetrical indirect covariance processing methods to combine various discrete two-dimensional NMR spectra to afford the equivalent of the much less sensitive hyphenated 2D NMR experiments, for example indirect covariance (icv)-heteronuclear single quantum coherence (HSQC)-COSY and icv-HSQC-nuclear Overhauser effect spectroscopy (NOESY). Alternatively, unsymmetrical indirect covariance processing methods can be used to combine multiple heteronuclear 2D spectra to afford icv-13C-15N HSQC-HMBC correlation spectra.

View Article and Find Full Text PDF

Unsymmetrical indirect covariance processing methods allow the derivation of hyphenated 2D NMR data from the component 2D spectra, potentially circumventing the acquisition of the much lower sensitivity hyphenated 2D NMR experimental data. Calculation of HSQC-COSY and HSQC-NOESY spectra from GHSQC, COSY, and NOESY spectra, respectively, has been reported. The use of unsymmetrical indirect covariance processing has also been applied to the combination of (1)H- (13)C GHSQC and (1)H- (15)N long-range correlation data (GHMBC, IMPEACH, or CIGAR-HMBC).

View Article and Find Full Text PDF

Utilization of long-range (1)H--(15)N heteronuclear chemical shift correlation has continually grown in importance since the first applications were reported in 1995. More recently, indirect covariance NMR methods have been introduced followed by the development of unsymmetrical indirect covariance processing methods. The latter technique has been shown to allow the calculation of hyphenated 2D NMR data matrices from more readily acquired nonhyphenated 2D NMR spectra.

View Article and Find Full Text PDF

GHSQC-TOCSY experiments allow sorting of proton-proton connectivity information as a function of (13)C chemical shift. GHSQC-TOCSY is a relatively insensitive 2D NMR experiment. Given two coherence transfer experiments, A --> B and A --> C, it is possible to indirectly determine B <--> C.

View Article and Find Full Text PDF

There has been considerable interest over the past decade in the utilization of direct and long-range 1H- 15N heteronuclear shift correlation methods at natural abundance to facilitate the elucidation of small molecule structures. Recently, there has also been a high level of interest in the exploration of indirect covariance NMR methods. Our initial explorations in this area led to the development of unsymmetrical indirect covariance methods, which allow the calculation of hyphenated 2D NMR spectra such as 2D GHSQC-COSY and GHSQC-NOESY from the discrete component 2D NMR experiments.

View Article and Find Full Text PDF

We have recently demonstrated that unsymmetrical indirect covariance NMR methods can be used to mathematically calculate the equivalent of low sensitivity, hyphenated NMR experiments by combining data from a pair of higher sensitivity experiments. The present report demonstrates the application of this method to the combination of HSQC and NOESY spectra to provide results comparable to HSQC-NOESY data, albeit with greater sensitivity and with considerably less spectrometer time.

View Article and Find Full Text PDF