Publications by authors named "Bruce D Hammock"

The microsomal epoxide hydrolase (mEH) is important in the detoxification of carcinogens in the liver and other tissues but is also a blood biomarker of hepatitis and liver cancer. Improved analytical methods are needed for the study of its role in the metabolism of xenobiotics and endogenous roles as a blood biomarker of diseases. The development of a double nanobody sandwich ELISA offers significant improvements over traditional polyclonal or monoclonal antibody-based assays, enhancing both the homogeneity and the stability of assay production.

View Article and Find Full Text PDF

Soluble epoxide hydrolase (sEH) is a bifunctional enzyme involved in fatty acid metabolism and a promising drug target. We previously reported first-generation sEH proteolysis-targeting chimeras (PROTACs) with limited degradation potency and low aqueous and metabolic stability. Herein, we report the development of next-generation sEH PROTAC molecules with improved stability and degradation potency.

View Article and Find Full Text PDF

Highsucrose diet (HSD) was reported as a causative factor for multiorgan injuries. The underlying mechanisms and therapeutic strategies remain largely uncharted. In the present study, by using a metabolomics approach, we identified the soluble epoxide hydrolase (sEH) as a therapeutic target for HSD-mediated gut barrier dysfunction.

View Article and Find Full Text PDF

A new type of label-free electrochemical immunosensor for the high-sensitivity determination of parathion was developed based on the oriented immobilization of nanobody (VHH9) on a gold nanoparticle-loaded polyvinyl alcohol/citric acid nanofiber membrane-modified electrode. The morphology characterization and assembly process of the modified materials were investigated using scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). Under the optimum conditions, the label-free electrochemical immunosensor for parathion exhibited a linear range of 0.

View Article and Find Full Text PDF

Introduction: We reported that Ca-independent phospholipase Aβ (iPLAβ)-derived lipids (iDLs) contribute to type 1 diabetes (T1D) onset. As CD4 and CD8 T cells are critical in promoting β-cell death, we tested the hypothesis that iDL signaling from these cells participates in T1D development.

Methods: CD4 and CD8 T cells from wild-type non-obese diabetic () and .

View Article and Find Full Text PDF

Aims: Periodontitis is a prevalent inflammatory disorder affecting the oral cavity, driven by dysbiotic oral biofilm and host immune response interactions. While the major clinical focus of periodontitis treatment is currently controlling oral biofilm, understanding the immune response is crucial to prevent disease progression. Soluble epoxide hydrolase (sEH) inhibition has shown promise in preventing alveolar bone resorption.

View Article and Find Full Text PDF
Article Synopsis
  • - Type 1 diabetes (T1D) is caused by autoimmune destruction of insulin-producing β-cells, with macrophages playing a key role in this process through lipid signaling.
  • - Reducing myeloid-iPLA2β in NOD mice leads to less inflammation, encourages a shift to anti-inflammatory macrophages, and decreases T-cell activation, which is linked to lower T1D rates.
  • - Targeting iPLA2β in macrophages presents a promising strategy to slow down or prevent the onset of T1D by modulating inflammatory responses.
View Article and Find Full Text PDF

Alzheimer's Disease and Alzheimer's Disease-related dementias (AD/ADRD) pose major global healthcare challenges, with diabetes mellitus (DM) being a key risk factor. Both AD and DM-related ADRD are characterized by reduced cerebral blood flow, although the exact mechanisms remain unclear. We previously identified compromised cerebral hemodynamics as early signs in TgF344-AD and type 2 DM-ADRD (T2DN) rat models.

View Article and Find Full Text PDF
Article Synopsis
  • The rising focus on agricultural product quality and safety has led to the development of innovative, affordable smart detection technologies, particularly utilizing smartphones.
  • Smartphones have transformed into portable analytical tools with advanced features, including high-resolution cameras and sensors, aiding in the inspection and analysis of agriculture products.
  • The review discusses the improvements in agricultural product inspection over the last decade, assesses current smart inspection methods, and projects future advancements in this field.
View Article and Find Full Text PDF

Monosodium glutamate (MSG) is a widely used food additive with conflicting evidence regarding its potential effects on human health, with proposed relevance for obesity and metabolic syndrome (MetS) or chronic kidney disease. As being able to accurately quantify the MSG dietary intake would help clarify the open issues, we constructed a predictive formula to estimate the daily intake of MSG in a rat model based on the urinary metabolic profile. Adult male Wistar rats were divided into groups receiving different daily amounts of MSG in drinking water (0.

View Article and Find Full Text PDF

Soluble epoxide hydrolase (sEH) is a bifunctional enzyme involved in fatty acid metabolism and promising drug target. We previously reported first-generation sEH proteolysis-targeting chimeras (PROTACs) with limited degradation potency and low aqueous and metabolic stability. Herein, we report the development of next-generation sEH PROTAC molecules with improved stability and degradation potency.

View Article and Find Full Text PDF

Inhibition of soluble epoxide hydrolase (sEH) is a promising therapeutic strategy for treating neuropathic pain. These inhibitors effectively reduce diabetic neuropathic pain and inflammation induced by Freund's adjuvant which makes them a suitable alternative to traditional opioids. This study showcased the notable analgesic effects of compound (1,1'-(hexane-1,6-diyl)bis(3-((adamantan-1-yl)methyl)urea)) in both inflammatory and diabetic neuropathy models.

View Article and Find Full Text PDF

Oxylipins are a group of bioactive fatty acid metabolites generated via enzymatic oxygenation. They are notably involved in inflammation, pain, vascular tone, hemostasis, thrombosis, immunity, and coagulation. Oxylipins have become the focus of therapeutic intervention since they are implicated in many conditions, such as nonalcoholic fatty liver disease, cardiovascular disease, and aging.

View Article and Find Full Text PDF

Macroporous three-dimensional (3D) framework structured melamine foam-based Enzyme-Linked Immunosorbent Assay (f-ELISA) biosensors were developed for rapid, reliable, sensitive, and on-site detection of trace amount of biomolecules and chemicals. Various ligands can be chemically immobilized onto the melamine foam, which brings in the possibility of working with antibodies, nanobodies, and peptides, respectively, as affinity probes for f-ELISA biosensors with improved stability. Different chemical reagents can be used to modify the foam materials, resulting in varied reactivities with antibodies, nanobodies, and peptides.

View Article and Find Full Text PDF

Patulin, an emerging mycotoxin with high toxicity, poses great risks to public health. Considering the poor antibody production in patulin immunization, this study focuses on the four-dimensional data-independent acquisition (4D-DIA) quantitative proteomics to reveal the immune response of patulin in rabbits. The rabbit immunization was performed with the complete developed antigens of patulin, followed by the identification of the immune serum.

View Article and Find Full Text PDF
Article Synopsis
  • Soluble epoxide hydrolase (sEH) and HDAC6 are crucial in the NF-κB pathway for inflammatory responses, and their inhibitors show strong potential against inflammation and pain.
  • Researchers designed dual-targeting inhibitors combining urea or squaramide with hydroxamic acid to assess their effectiveness in treating inflammatory pain in mouse models.
  • Among tested compounds, one showed the best inhibition of both sEH and HDAC6, demonstrating superior analgesic effects compared to individual inhibitors, making it a promising candidate for further research and development.
View Article and Find Full Text PDF

Nontoxic substitutes to mycotoxins can facilitate the development of eco-friendly immunoassays. To explore a novel nontoxic substitute to ochratoxin A (OTA), this study screened shark anti-idiotypic variable new antigen receptors (VNARs) against the alpaca anti-OTA nanobody Nb28 through phage display. After four rounds of biopanning of a naïve VNAR phage display library derived from six adult Chiloscyllium plagiosum sharks, one positive clone, namely, P-3, was validated through a phage enzyme-linked immunosorbent assay (phage ELISA).

View Article and Find Full Text PDF

Simultaneous inhibition of soluble epoxide hydrolase (sEH) and fatty acid amide hydrolase (FAAH) with a single small molecule represents a novel therapeutic approach in treating inflammatory pain, since both targets are involved in pain and inflammation processes. In this study using multi-target directed ligands methodology we designed and synthesized 7 quinolinyl-based dual sEH/FAAH inhibitors, using an optimized microwave-assisted Suzuki-Miyaura coupling reaction and tested their potency in human FAAH and human, rat, and mouse sEH inhibition assays. The structure-activity relationship study showed that quinolinyl moiety is well tolerated in the active sites of both enzymes, yielding several very potent dual sEH/FAAH inhibitors with the IC values in the low nanomolar range.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists are using special tests called immunoassays to find tiny amounts of chemicals, like pesticides, in food and the environment.
  • They created new types of antibodies specifically for a pesticide called atrazine, which helps make more accurate tests and reduces mistakes.
  • The new test showed good results in spotting atrazine in fruits, veggies, and tea, proving it can help keep our food safer from harmful chemicals.
View Article and Find Full Text PDF

To break through the bottleneck in preparation of nanobody (Nb) for chemical contaminants induced by the difficulties in the synthesis of immunogen, complexity and unexpectable efficiency of immunization, a novel strategy to generate Nbs based on the designed synthetic Nb libraries with final size up to 10 cfu/mL was adopted and succeeded in selection of anti-coumaphos Nb A4. Furthermore, an affinity-matured mutant Nb 3G was obtained from the secondary library. Finally, an ic-ELISA was established with the limit of detection for coumaphos low to 1.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection involves an initial viral infection phase followed by a host-response phase that includes an eicosanoid and cytokine storm, lung inflammation and respiratory failure. While vaccination and early anti-viral therapies are effective in preventing or limiting the pathogenic host response, this latter phase is poorly understood with no highly effective treatment options. Inhibitors of soluble epoxide hydrolase (sEH) increase levels of anti-inflammatory molecules called epoxyeicosatrienoic acids (EETs).

View Article and Find Full Text PDF

The fungicide phenamacril has been employed to manage and mycotoxins in crops, leading to persistent residues in the environment and plants. Detecting phenamacril is pivotal for ensuring environmental and food safety. In this study, haptens and artificial antigens were synthesized to produce antiphenamacril monoclonal antibodies (mAbs).

View Article and Find Full Text PDF