Publications by authors named "Bruce Conway"

Introduction: A key barrier to translation of biomedical research discoveries is a lack of understanding among scientists regarding the complexity and process of implementation. To address this challenge, the National Science Foundation's Innovation Corps™ (I-Corps™) program trains researchers in entrepreneurship. We report results from the implementation of an I-Corps™ training program aimed at biomedical scientists from institutions funded by the National Center for Advancing Translational Sciences (NCATS).

View Article and Find Full Text PDF

Many optimization methods require accurate partial derivative information in order to ensure efficient, robust, and accurate convergence. In this paper, analytic methods are developed for computing complex partial derivatives of two bounded-impulse trajectory models: the multiple gravity-assist low-thrust and the multiple gravity-assist with deep-space maneuvers using shooting transcriptions. Particular attention is paid to the match point defect constraint present in these models due to its complex functional dependencies, and the gradient computations presented are extended to allow for the computation of trajectory path constraints.

View Article and Find Full Text PDF

This article highlights our work toward the identification of a potent, selective, and efficacious acidic mammalian chitinase (AMCase) inhibitor. Rational design, guided by X-ray analysis of several inhibitors bound to human chitotriosidase (hCHIT1), led to the identification of compound 7f as a highly potent AMCase inhibitor (IC values of 14 and 19 nM against human and mouse enzyme, respectively) and selective (>150× against mCHIT1) with very good PK properties. This compound dosed once daily at 30 mg/kg po showed significant anti-inflammatory efficacy in HDM-induced allergic airway inflammation in mice, reducing inflammatory cell influx in the BALF and total IgE concentration in plasma, which correlated with decrease of chitinolytic activity.

View Article and Find Full Text PDF

Preliminary design of low-thrust interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed, and in some cases the final destination. In addition, a time-history of control variables must be chosen that defines the trajectory.

View Article and Find Full Text PDF

Increasing reports on the incidental ingestion of metallic bristles from barbeque grill cleaning brushes have been reported. We sought to describe the clinical presentation and grilling habits of patients presenting after ingesting metallic bristles in an attempt to identify risk factors. We performed a chart review of six patients with documented enteric injury from metallic bristles.

View Article and Find Full Text PDF

The Ugi reaction has been successfully applied to the synthesis of novel arginase inhibitors. In an effort to decrease conformational flexibility of the previously reported series of 2-amino-6-boronohexanoic acid (ABH) analogs 1, we designed and synthesized a series of compounds, 2, in which a piperidine ring is linked directly to a quaternary amino acid center. Further improvement of in vitro activity was achieved by adding two carbon bridge in the piperidine ring, that is, tropane analogs 11.

View Article and Find Full Text PDF

Recent efforts to identify treatments for myocardial ischemia reperfusion injury have resulted in the discovery of a novel series of highly potent α,α-disubstituted amino acid-based arginase inhibitors. The lead candidate, (R)-2-amino-6-borono-2-(2-(piperidin-1-yl)ethyl)hexanoic acid, compound 9, inhibits human arginases I and II with IC50s of 223 and 509 nM, respectively, and is active in a recombinant cellular assay overexpressing human arginase I (CHO cells). It is 28% orally bioavailable and significantly reduces the infarct size in a rat model of myocardial ischemia/reperfusion injury.

View Article and Find Full Text PDF

Background: Canagliflozin is a sodium glucose co-transporter (SGLT) 2 inhibitor in clinical development for the treatment of type 2 diabetes mellitus (T2DM).

Methods: (14)C-alpha-methylglucoside uptake in Chinese hamster ovary-K cells expressing human, rat, or mouse SGLT2 or SGLT1; (3)H-2-deoxy-d-glucose uptake in L6 myoblasts; and 2-electrode voltage clamp recording of oocytes expressing human SGLT3 were analyzed. Graded glucose infusions were performed to determine rate of urinary glucose excretion (UGE) at different blood glucose (BG) concentrations and the renal threshold for glucose excretion (RT(G)) in vehicle or canagliflozin-treated Zucker diabetic fatty (ZDF) rats.

View Article and Find Full Text PDF

A series of indole-O-glucosides and C-glucosides was synthesized and evaluated in SGLT1 and SGLT2 cell-based functional assays. Compounds 2a and 2o were identified as potent SGLT2 inhibitors and screened in ZDF rats.

View Article and Find Full Text PDF

A series of benzo-fused heteroaryl-O-glucosides was synthesized and evaluated in SGLT1 and 2 cell-based functional assays. Indole-O-glucoside 10a and benzimidazole-O-glucoside 18 exhibited potent in vitro SGLT2 inhibitory activity.

View Article and Find Full Text PDF

A series of 3-anilino-quinoxalinones has been identified as a new class of glycogen phosphorylase inhibitors. The lead compound 1 was identified through high throughput screening as well as through pharmacophore-based electronic screening. Modifications were made to the scaffold of 1 to produce novel analogues, some of which are 25 times more potent than the lead compound.

View Article and Find Full Text PDF

Novel indolylindazolylmaleimides were synthesized and examined for kinase inhibition. We identified low-nanomolar inhibitors of PKC-beta with good to excellent selectivity vs other PKC isozymes and GSK-3beta. In a cell-based functional assay, 8f and 8i effectively blocked IL-8 release induced by PKC-betaII (IC(50) = 20-25 nM).

View Article and Find Full Text PDF

A series of glucose conjugates was synthesized and tested for inhibition of SGLT1 and SGLT2. The core structure was derived from compound 1a. Modification of the benzofuran moiety and 4'-substituent of the phenyl ring in compound 1a improved selectivity at SGLT2.

View Article and Find Full Text PDF

Two approaches were developed to synthesize the novel 7-azaindolyl-heteroarylmaleimides. The first approach was based upon the palladium-catalyzed Suzuki cross-coupling or Stille cross-coupling of 2-chloro-maleimide 5 with various arylboronic acids or arylstannanes. The second approach was based upon the condensation of ethyl 7-azaindolyl-3-glyoxylate 12 with various acetamides.

View Article and Find Full Text PDF

A novel series of acyclic 3-(7-azaindolyl)-4-(aryl/heteroaryl)maleimides was synthesized and evaluated for activity against GSK-3beta and selectivity versus PKC-betaII, as well as a broad panel of protein kinases. Compounds 14 and 17c potently inhibited GSK-3beta (IC(50)=7 and 26 nM, respectively) and exhibited excellent selectivity over PKC-betaII (325 and >385-fold, respectively). Compound 17c was also highly selective against 68 other protein kinases.

View Article and Find Full Text PDF

Palladium catalyzed cross-coupling reactions were used to synthesize two key intermediates 3 and 5 that resulted in the synthesis of novel series of macrocyclic bis-7-azaindolylmaleimides. Among the three series of macrocycles, the oxygen atom and thiophene containing linkers yielded molecules with higher inhibitory potency at GSK-3 beta (K(i)=0.011-0.

View Article and Find Full Text PDF

Stimulation of a cell with insulin initiates a signal transduction cascade that results in cellular activities that include phosphorylation of the receptor itself. Measurement of the degree of phosphorylation can serve as a marker for receptor activation. Receptor phosphorylation has been measured using Western blot analysis, which is very low throughput and not easily quantifiable.

View Article and Find Full Text PDF

We have quantitatively measured gene expression for the sodium-dependent glucose cotransporters 1 and 2 (SGLT1 and SGLT2) in 23 human tissues using the method of real time PCR. As predicted, our results revealed that the expression of SGLT1 was very high in the small intestine (1.2E + 6 molecules/microg total RNA) relative to that in the kidney (3E + 4 molecules/microg total RNA).

View Article and Find Full Text PDF

Attempts to design the macrocyclic maleimides as selective protein kinase C gamma inhibitors led to the unexpected discovery of a novel series of potent and highly selective glycogen synthase kinase-3beta (GSK-3beta) inhibitors. Palladium-catalyzed cross-coupling reactions were used to synthesize the key intermediates 17 and 22 that resulted in the synthesis of novel macrocycles. All three macrocyclic series (bisindolyl-, mixed 7-azaindoleindolyl-, and bis-7-azaindolylmaleimides) were found to have submicromolar inhibitory potency at GSK-3beta with various degrees of selectivity toward other protein kinases.

View Article and Find Full Text PDF

Efficient methods were developed to synthesize a novel series of macrocyclic bisindolylmaleimides containing linkers with multiple heteroatoms. Potent inhibitors (single digit nanomolar IC(50)) for PKC-beta and GSK-3beta were identified, and compounds showed good selectivity over PKC-alpha, -gamma, -delta, -epsilon, and -zeta. Representative compound 5a also had high selectivity in a screening panel of 10 other protein kinases.

View Article and Find Full Text PDF

Plasma membrane-associated G protein-coupled receptors (GPCRs) initiate the transmission of multiple intracellular signals leading to a myriad of physiological and pathophysiological effects. The downstream signaling events associated with occupation of the GPCR and activation of the G-protein include the generation of numerous second messenger molecules to provide the necessary signal amplification within the appropriate intracellular compartment to transmit a specific signal from the cell surface to the cell interior. The complex process of signal transmission also requires a series of highly orchestrated events which includes the translocation of cellular proteins to discreet intracellular destinations.

View Article and Find Full Text PDF