Following the Q2XAFS Workshop and Satellite to IUCr Congress 2017 on `Data Acquisition, Treatment, Storage - quality assurance in XAFS spectroscopy', a summary is given of the discussion on different aspects of a XAFS experiment that affect data quality. Some pertinent problems ranging from sources and minimization of noise to harmonic contamination and uncompensated monochromator glitches were addressed. Also, an overview is given of the major limitations and pitfalls of a selection of related methods, such as photon-out spectroscopies and energy-dispersive XAFS, and of increasingly common applications, namely studies at high pressure, and time-resolved investigations of catalysts in operando.
View Article and Find Full Text PDFRound robin studies have been used across fields of science for quality control testing and to investigate laboratory dependencies and cross-platform inconsistencies as well as to drive forward the improvement of understanding of experimental systems, systematic effects and theoretical limitations. Here, following the Q2XAFS Workshop and Satellite to IUCr Congress 2017 on `Data Acquisition, Treatment, Storage - quality assurance in XAFS spectroscopy', a mechanism is suggested for a suitable study across XAFS (X-ray absorption fine-structure) beamlines and facilities, to enable each beamline to cross-calibrate, provide representative test data, and to enable collaborative cross-facility activities to be more productive.
View Article and Find Full Text PDFRemediation and prevention of environmental contamination by toxic metals is an ongoing issue. Additionally, improving water filtration systems is necessary to prevent toxic metals from circulating through the water supply. Graphene oxide (GO) is a highly sorptive material for a variety of heavy metals under different ionic strength conditions over a wide pH range, making it a promising candidate for use in metal adsorption from contaminated sites or in filtration systems.
View Article and Find Full Text PDFWe report for the first time the synthesis of large, free-standing, MoO(μ-S)(Etdtc) (MoDTC) nanosheets (NSs), which exhibit an electron-beam induced crystalline-to-amorphous phase transition. Both electron beam ionization and femtosecond (fs) optical excitation induce the phase transition, which is size-, morphology-, and composition-preserving. Resulting NSs are the largest, free-standing regularly shaped two-dimensional amorphous nanostructures made to date.
View Article and Find Full Text PDFBimetallic nanoparticles are of immense scientific and technological interest given the synergistic properties observed when two different metallic species are mixed at the nanoscale. This is particularly prevalent in catalysis, where bimetallic nanoparticles often exhibit improved catalytic activity and durability over their monometallic counterparts. Yet despite intense research efforts, little is understood regarding how to optimize bimetallic surface composition and structure synthetically using rational design principles.
View Article and Find Full Text PDFGroup 6 complexes M(ONO)2 (M = Cr, Mo, W; ONO = bis(2-oxy-3,5-di-tert-butylphenyl)amide) are prepared by the reaction of divalent metal halide precursors with Pb(ONO(Q))2. Analogous complexes containing the 2,4,6,8-tetra-tert-butyl-1,9-dioxophenoxazinate ligand (DOPO) are prepared by protonolysis of chromocene with H(DOPO(Q)) or by reaction of Pb(DOPO(Q))2 with M2Br4(CO)8 (M = Mo, W). The molybdenum and tungsten complexes are symmetrical, octahedral compounds for which spectroscopic data are consistent with M(VI) complexes with fully reduced [L(Cat)](3-) ligands.
View Article and Find Full Text PDFSuccessive ionic layer adsorption and reaction (SILAR) is a popular method of depositing the metal chalcogenide semiconductor layer on the mesoscopic metal oxide films for designing quantum-dot-sensitized solar cells (QDSSCs) or extremely thin absorber (ETA) solar cells. While this deposition method exhibits higher loading of the light-absorbing semiconductor layer than direct adsorption of presynthesized colloidal quantum dots, the chemical identity of these nanostructures and the evolution of interfacial structure are poorly understood. We have now analyzed step-by-step SILAR deposition of CdSe films on mesoscopic TiO2 nanoparticle films using X-ray absorption near-edge structure analysis and probed the interfacial structure of these films.
View Article and Find Full Text PDFThe mobility of uranium (U) in subsurface environments is controlled by interrelated adsorption, redox, and precipitation reactions. Previous work demonstrated the formation of nanometer-sized hydrogen uranyl phosphate (abbreviated as HUP) crystals on the cell walls of Bacillus subtilis, a non-U(VI)-reducing, Gram-positive bacterium. The current study examined the reduction of this biogenic, cell-associated HUP mineral by three dissimilatory metal-reducing bacteria, Anaeromyxobacter dehalogenans strain K, Geobacter sulfurreducens strain PCA, and Shewanella putrefaciens strain CN-32, and compared it to the bioreduction of abiotically formed and freely suspended HUP of larger particle size.
View Article and Find Full Text PDFMicrotubules (MTs) and the MT-associated proteins (MAPs) are critical cooperative agents involved in complex nanoassembly processes in biological systems. These biological materials and processes serve as important inspiration in developing new strategies for the assembly of synthetic nanomaterials in emerging techologies. Here, we explore a dynamic biofabrication process, modeled after the form and function of natural aster-like MT assemblies such as centrosomes.
View Article and Find Full Text PDFMany reactions in both chemistry and biology rely on the ability to precisely control and fix the solution concentrations of either protons or hydroxide ions. In this report, we describe the behavior of thermally programmable pH buffer systems based on the copolymerization of varying amounts of acrylic acid (AA) groups into N-isopropylacrylamide polymers. Because the copolymers undergo phase transitions upon heating and cooling, the local environment around the AA groups can be reversibly switched between hydrophobic and hydrophilic states affecting the ionization behavior of the acids.
View Article and Find Full Text PDFA thermally responsive copolymer is designed to modulate the properties of an electrolyte solution. The copolymer is prepared using pNIPAM, which governs the thermal properties, and acrylic acid, which provides the electrolyte ions. As the polymer undergoes a thermally activated phase transition, the local environment around the acid groups is reversibly switched, decreasing ion concentration and conductivity.
View Article and Find Full Text PDFJ Colloid Interface Sci
June 2011
Understanding the interactions of nanoparticles with lipid membranes is crucial in establishing the mechanisms that govern assembly of membrane-based nanocomposites, nanotoxicology, and biomimetic inspired self-assembly. In this study, we explore binding of charged nanoparticles to lipid bilayers, both as liposomes and substrate supported assemblies. We find that the presence of a solid-support, regardless of curvature, eliminates the ability of zwitterionic fluid phase lipids to bind charged nanoparticles.
View Article and Find Full Text PDFSupported lipid bilayers containing phosphatidylcholine headgroups are observed to undergo reorganization from a 2D fluid, lipid bilayer assembly into an array of complex 3D structures upon exposure to extreme pH environments. These conditions induce a combination of molecular packing and electrostatic interactions that can create dynamic morphologies of highly curved lipid membrane structures. This work demonstrates that fluid, single-component lipid bilayer assemblies can create complex morphologies, a phenomenon typically only associated with lipid bilayers of mixed composition.
View Article and Find Full Text PDFWe demonstrate the construction of novel protein-lipid assemblies through the design of a lipid-like molecule, DPIDA, endowed with tail-driven affinity for specific lipid membrane phases and head-driven affinity for specific proteins. In studies performed on giant unilamellar vesicles (GUVs) with varying mole fractions of dipalymitoylphosphatidylcholine (DPPC), cholesterol, and diphytanoylphosphatidyl choline (DPhPC), DPIDA selectively partitioned into the more ordered phases, either solid or liquid-ordered (L(o)) depending on membrane composition. Fluorescence imaging established the phase behavior of the resulting quaternary lipid system.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2010
Increased mass transport due to hemispherical diffusion is observed to occur in 3D porous carbon electrodes defined by interferometric lithography. Enhanced catalytic methanol oxidation, after modifying the porous carbon with palladium nanoparticles, and uncharacteristically uniform conducting polymer deposition into the structures are demonstrated. Both examples result in two regions of hierarchical porosity that can be created to maximize surface area, via nanostructuring, within the extended porous network, while taking advantage of hemispherical diffusion through the open pores.
View Article and Find Full Text PDFRuthenium oxide is a model pseudocapacitive materials exhibiting good electronic and protonic conduction and has been shown to achieve very high gravimetric capacitances. However, the capacitance of thermally prepared ruthenium oxide is generally low because of low protonic conductivity resulting from dehydration of the oxide upon annealing. High-temperature processing, however also produces the electrically conducting ruthenium oxide rutile phase, which is of great interest for electrochemical capacitors.
View Article and Find Full Text PDFPhospholipids comprise an enormous range of chemical structures that provide much of the functionality associated with cellular membranes. We have developed a simple method for incorporating phospholipids onto the surfaces of anisotropic gold nanorods as a stepping-stone for creating responsive and multifunctional nanocomposites. In this report, we demonstrate how phospholipids can be used to control the self-assembly of gold nanorods into agglomerate architectures ranging from open "end-to-end" networks to densely packed "side-to-side" arrays.
View Article and Find Full Text PDFThis study investigates the complexation environments of aqueous Pb and Cd in the presence of the trihydroxamate microbial siderophore, desferrioxamine-B (DFO-B) as a function of pH. Complexation of aqueous Pb and Cd with DFO-B was predicted using equilibrium speciation calculation. Synchrotron-based X-ray absorption fine structure (XAFS) spectroscopy at Pb L(III) edge and Cd K edge was used to characterize Pb and Cd-DFO-B complexes at pH values predicted to best represent each of the metal-siderophore complexes.
View Article and Find Full Text PDFMicrotubules (MTs) are polar protein filaments that participate in critical biological functions ranging from motor protein direction to coordination of chromosome separation during cell division. The effective facilitation of these processes, however, requires careful regulation of the polar orientation and spatial organization of the assembled MTs. We describe here an artificial approach to polar MT assembly that enables us to create three-dimensional polar-oriented synthetic microtubule organizing centers (POSMOCs).
View Article and Find Full Text PDFA variety of bifunctional crosslinking agents have been explored for stabilizing microtubule shuttles used for the active transport of nanomaterials in artificial environments. Crosslinking agents that target amine residues form intertubulin crosslinks that produce crosslinked microtubules (CLMTs) with structural and functional lifetimes that can be up to four times as long as those achieved with taxol stabilization. Such CLMTs are stable at temperatures down to -10 degrees C, are resistant to depolymerization induced by metal ions such as Ca2+, and yet continue to be adsorbed and transported by self-assembled monolayers containing the motor protein kinesin.
View Article and Find Full Text PDFTethered supramolecular machines represent a new class of active self-assembled monolayers in which molecular configurations can be reversibly programmed using electrochemical stimuli. We are using these machines to address the chemistry of substrate surfaces for integrated microfluidic systems. Interactions between the tethered tetracationic cyclophane host cyclobis(paraquat-p-phenylene) and dissolved pi-electron-rich guest molecules, such as tetrathiafulvalene, have been reversibly switched by oxidative electrochemistry.
View Article and Find Full Text PDFUltrafast relaxation dynamics of charge carriers in CdSe quantum wires with diameters between 6 and 8 nm are studied as a function of carrier density. At high electron-hole pair densities above 10(19) cm(-3) the dominant process for carrier cooling is the "bimolecular" Auger recombination of one-dimensional (1D) excitons. However, below this excitation level an unexpected transition from a bimolecular (exciton-exciton) to a three-carrier Auger relaxation mechanism occurs.
View Article and Find Full Text PDFStructural transformations at the TiO2Pt and TiO2Ir interfaces during UV-irradiation have been probed by X-ray absorption spectroscopy. Oxidation by the photogenerated holes results in the intercalation of Pt and Ir into the Titania matrix. The structural transformations observed with Pt and Ir nanoparticles anchored on TiO2 is different than the clustering of gold atoms observed in the TiO2/Au system.
View Article and Find Full Text PDFRecently, kinesin biomolecular motors and microtubules filaments (MTs) were used to transport metal and semiconductor nanoparticles with the long-term goal of exploiting this active transport system to dynamically assemble nanostructured materials. In some cases, however, the presence of nanoparticle cargo on MTs was shown to inhibit transport by interfering with kinesin-MT interactions. The primary objectives of this work were (1) to determine what factors affect the ability of kinesin and MTs to transport nanoparticle cargo, and (2) to establish a functional parameter space in which kinesin and MTs can support unimpeded transport of nanoparticles and materials.
View Article and Find Full Text PDFWe have investigated the liquid-phase self-assembly of 1-alkanethiols (HS(CH2)n-1CH3, n = 8, 16, and 18) on hydrogenated Ge(111), using attenuated total reflection Fourier transform infrared spectroscopy as well as water contact angle measurements. The infrared absorbance of C-H stretching modes of alkanethiolates on Ge, in conjunction with water contact angle measurements, demonstrates that the final packing density is a function of alkanethiol concentration in 2-propanol and its chain length. High concentration and long alkyl chain increase the steady-state surface coverage of alkanethiolates.
View Article and Find Full Text PDF