Publications by authors named "Bruce Braaten"

The phenomenon of contact-dependent growth inhibition (CDI) and the genes required for CDI () were identified and isolated in 2005 from an isolate (EC93) from rats. Although the locus has been the focus of extensive research during the past 15 years, little is known about the EC93 isolate from which it originates. Here we sequenced the EC93 genome and find two complete and functional loci (including the previously identified locus), both carried on a large 127 kb plasmid.

View Article and Find Full Text PDF

Clonally derived bacterial populations exhibit significant genotypic and phenotypic diversity that contribute to fitness in rapidly changing environments. Here, we show that serial passage of Salmonella enterica serovar Typhimurium LT2 (StLT2) in broth, or within a mouse host, results in selection of an evolved population that inhibits the growth of ancestral cells by direct contact. Cells within each evolved population gain the ability to express and deploy a cryptic "orphan" toxin encoded within the rearrangement hotspot (rhs) locus.

View Article and Find Full Text PDF

Bacterial contact-dependent growth inhibition (CDI) is mediated by the CdiA/CdiB family of two-partner secretion proteins. Each CdiA protein exhibits a distinct growth inhibition activity, which resides in the polymorphic C-terminal region (CdiA-CT). CDI(+) cells also express unique CdiI immunity proteins that specifically block the activity of cognate CdiA-CT, thereby protecting the cell from autoinhibition.

View Article and Find Full Text PDF

Bacteria have developed mechanisms to communicate and compete with one another in diverse environments. A new form of intercellular communication, contact-dependent growth inhibition (CDI), was discovered recently in Escherichia coli. CDI is mediated by the CdiB/CdiA two-partner secretion (TPS) system.

View Article and Find Full Text PDF

Contact-dependent growth inhibition (CDI) is a phenomenon by which bacterial cell growth is regulated by direct cell-to-cell contact via the CdiA/CdiB two-partner secretion system. Characterization of mutants resistant to CDI allowed us to identify BamA (YaeT) as the outer membrane receptor for CDI and AcrB as a potential downstream target. Notably, both BamA and AcrB are part of distinct multi-component machines.

View Article and Find Full Text PDF

Bacteria have developed mechanisms to communicate and compete with each other for limited environmental resources. We found that certain Escherichia coli, including uropathogenic strains, contained a bacterial growth-inhibition system that uses direct cell-to-cell contact. Inhibition was conditional, dependent upon the growth state of the inhibitory cell and the pili expression state of the target cell.

View Article and Find Full Text PDF

Pap pili gene expression is controlled by a reversible OFF/ON phase switch that is orchestrated by binding of Lrp to pap pilin promoter proximal sites 1, 2, and 3 (OFF) or pap promoter distal sites 4, 5, and 6 (ON). Movement of Lrp between proximal and distal sites controls pap pilin transcription and is modulated by PapI and DNA adenine methylase. Here we show that activation of the environmentally responsive CpxAR two-component regulatory system inhibits Pap phase variation by generation of phosphorylated CpxR (CpxR-P).

View Article and Find Full Text PDF

Bacteria have developed epigenetic mechanisms to control the reversible Off-to-On switching of cell surface structures such as pyelonephritis-associated pili (PAP). The pap pili switch is primarily controlled by the global regulator leucine-responsive regulatory protein (Lrp), the local regulator PapI, and DNA adenine methylase (Dam). There are two sets of binding sites for Lrp in the pap regulatory region: promoter proximal sites 1,2,3 and promoter distal sites 4,5,6.

View Article and Find Full Text PDF

The expression of pyelonephritis-associated pili (Pap) in uropathogenic Escherichia coli is epigenetically controlled by a reversible OFF to ON switch. In phase OFF cells, the global regulator Lrp is bound to pap sites proximal to the pilin promoter, whereas in phase ON cells, Lrp is bound to promoter distal sites. We have found that the local regulator PapI increases the affinity of Lrp for the sequence "ACGATC," which contains the target "GATC" site for DNA adenine methylase (Dam) and is present in both promoter proximal and distal sites.

View Article and Find Full Text PDF

Bacteria have developed an epigenetic phase variation mechanism to control cell surface pili-adhesin complexes between heritable expression (phase ON) and nonexpression (phase OFF) states. In the pyelonephritis-associated pili (pap) system, global regulators [catabolite gene activator protein (CAP), leucine-responsive regulatory protein (Lrp), DNA adenine methylase (Dam)] and local regulators (PapI and PapB) control phase switching. Lrp binds cooperatively to three pap DNA binding sites, sites 1-3, proximal to the papBA pilin promoter in phase OFF cells, whereas Lrp is bound to sites 4-6 distal to papBA in phase ON cells.

View Article and Find Full Text PDF