Publications by authors named "Bruce A Manning"

Removal of hexavalent chromium (Cr(VI)) from wastewater typically involves reduction of Cr(VI) to insoluble Cr(III) using zerovalent iron (Fe(0)) or ferrous iron (Fe(II)). This study investigates the effectiveness of Fe(II)-treated faujasite (zeolite Fe(II)-Y) for reduction of Cr(VI) and immobilization (adsorption/co-precipitation) of the Cr(III) reaction product. The Fe(II)-faujasite material effectively removed high concentrations of dissolved Cr(VI) from aqueous solution resulting in Cr solid loadings as high as 0.

View Article and Find Full Text PDF

The reaction of hexavalent chromium (Cr(VI)) with zerovalent iron (Fe0) during soil and groundwater remediation is an important environmental process. This study used several techniques including X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy to investigate nanometer scale Fe0 particles (nano Fe0) treated with Cr(III) and Cr(VI). X-ray diffraction and XPS analyses of oxidized nano Fe0 showed the crystalline Fe(III) phase is composed of lepidocrocite (gamma-FeOOH).

View Article and Find Full Text PDF

Zerovalent iron (Fe0) has tremendous potential as a remediation material for removal of arsenic from groundwater and drinking water. This study investigates the speciation of arsenate (As(V)) and arsenite (As(III)) after reaction with two Fe0 materials, their iron oxide corrosion products, and several model iron oxides. A variety of analytical techniques were used to study the reaction products including HPLC-hydride generation atomic absorption spectrometry, X-ray diffraction, scanning electron microscopy-energy-dispersive X-ray analysis, and X-ray absorption spectroscopy.

View Article and Find Full Text PDF

The oxidation of arsenite (As(III)) by manganese oxide is an important reaction in both the natural cycling of As and the development of remediation technology for lowering the concentration of dissolved As(III) in drinking water. This study used both a conventional stirred reaction apparatus and extended X-ray absorption fine structure (EXAFS) spectroscopy to investigate the reactions of As(III) and As(V) with synthetic birnessite (MnO2). Stirred reactor experiments indicate that As(III) is oxidized by MnO2 followed by the adsorption of the As(V) reaction product on the MnO2 solid phase.

View Article and Find Full Text PDF