Model lipid bilayers tethered to a gold substrate with molecular tethers are constructed. The conductance versus temperature dependence curve is then obtained. Here, a method to measure the activation energy for translocation of an ion through existing transmembrane pores in a sparsely tethered bilayer lipid membranes is presented.
View Article and Find Full Text PDFTethered bilayer lipid membranes (tBLMs) anchored to a solid substrate can be prepared and individual triangular voltage ramps from zero to 500 mV with a period of 2-10 ms applied to give membrane voltage dependencies with and without the addition of drugs and analytes in order to measure their electro-insertion properties.
View Article and Find Full Text PDFBecause they are firmly anchored to a noble metal substrate, tethered bilayer lipid membranes (tBLMs) are considerably more robust than supported lipid bilayers such as black lipid membranes (BLMs) (Cranfield et al. Biophys J 106:182-189, 2014). The challenge to rapidly create asymmetrical tBLMs that include a lipopolysaccharide outer leaflet for bacterial model membrane research can be overcome by the use of a Langmuir-Schaefer deposition protocol.
View Article and Find Full Text PDFMonitoring the changes in membrane conductance using electrical impedance spectroscopy is the platform of membrane-based biosensors in order to detect a specific target molecule. These biosensors represent the amalgamation of an electrical conductor such as gold and a chemically tethered bilayer lipid membrane with specific incorporated ion channels such as gramicidin-A that is further functionalized with detector molecules of interest.
View Article and Find Full Text PDFHere we report a protocol to investigate the heat transfer between irradiated gold nanoparticles (GNPs) and bilayer lipid membranes by electrochemistry using tethered bilayer lipid membranes (tBLMs) assembled on gold electrodes. Irradiated modified GNPs, such as streptavidin-conjugated GNPs, are embedded in tBLMs containing target molecules, such as biotin. By using this approach, the heat transfer processes between irradiated GNPs and model bilayer lipid membrane with entities of interest are mediated by a horizontally focused laser beam.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
September 2020
Plasmon resonance frequency irradiated gold nanoparticles (GNPs) have gained interest as a laser-targeted treatment for infections, tumors and for the controlled release of drugs in situ. Questions still remain, however, as to the efficiency of heat delivery within biological tissues and how this can be reliably determined. Here, we demonstrate how a nanomaterial-electrode interface that mimics cell membranes can detect the localized heat transfer characteristics arising from plasmon resonance frequency-matched laser excitation of GNPs.
View Article and Find Full Text PDFBackground: Sterols have been reported to modulate conformation and hence the function of several membrane proteins. One such group is the Chloride Intracellular Ion Channel (CLIC) family of proteins. The CLIC protein family consists of six evolutionarily conserved protein members in vertebrates.
View Article and Find Full Text PDFEur Phys J E Soft Matter
December 2016
Tethered lipid bilayer membranes (tBLM) are planar membranes composed of free lipids and molecules tethered to a solid planar substrate providing a useful model of biological membranes for a wide range of biophysical studies and biotechnological applications. The properties of the tBLM depend on the free lipids and on the chemistry of the tethering molecules. We present a nanoscale characterization of a tBLM composed of deuterated 1,2-dimyristoyl-sn-glycero-3-phosphocholine (d-DMPC) free lipids, benzyl disulfide undecaethylene glycol phytanol (DLP) tethering molecules, and benzyl disulfiide tetraethylene glycol polar spacer molecules (PSM) used to control the areal density of tethering molecules through coadsorption.
View Article and Find Full Text PDFThe Chloride Intracellular Ion Channel (CLIC) family consists of six conserved proteins in humans. These are a group of enigmatic proteins, which adopt both a soluble and membrane bound form. CLIC1 was found to be a metamorphic protein, where under specific environmental triggers it adopts more than one stable reversible soluble structural conformation.
View Article and Find Full Text PDFThe Chloride Intracellular Ion Channel (CLIC) family consists of six evolutionarily conserved proteins in humans. Members of this family are unusual, existing as both monomeric soluble proteins and as integral membrane proteins where they function as chloride selective ion channels, however no function has previously been assigned to their soluble form. Structural studies have shown that in the soluble form, CLIC proteins adopt a glutathione S-transferase (GST) fold, however, they have an active site with a conserved glutaredoxin monothiol motif, similar to the omega class GSTs.
View Article and Find Full Text PDFIn this work, we present experimental data, supported by a quantitative model, on the generation and effect of potential gradients across a tethered bilayer lipid membrane (tBLM) with, to the best of our knowledge, novel architecture. A challenge to generating potential gradients across tBLMs arises from the tethering coordination chemistry requiring an inert metal such as gold, resulting in any externally applied voltage source being capacitively coupled to the tBLM. This in turn causes any potential across the tBLM assembly to decay to zero in milliseconds to seconds, depending on the level of membrane conductance.
View Article and Find Full Text PDFThe Chloride Intracellular ion channel protein CLIC1 has the ability to spontaneously insert into lipid membranes from a soluble, globular state. The precise mechanism of how this occurs and what regulates this insertion is still largely unknown, although factors such as pH and redox environment are known contributors. In the current study, we demonstrate that the presence and concentration of cholesterol in the membrane regulates the spontaneous insertion of CLIC1 into the membrane as well as its ion channel activity.
View Article and Find Full Text PDFAlamethicin, a small transmembrane peptide, inserts into a tethered bilayer membrane (tBLM) to form ion channels, which we have investigated using electrical impedance spectroscopy. The number of channels formed is dependent on the incubation time, concentration of the alamethicin and the application of DC voltage. The properties of the ion channels when formed in tethered bilayers are similar to those for such channels assembled into black lipid membranes (BLMs).
View Article and Find Full Text PDF