Background: The mechanistic basis for neurocognitive deficits in central nervous system (CNS) lymphoma and other brain tumors is incompletely understood. We tested the hypothesis that tumor metabolism impairs neurotransmitter pathways and neurocognitive function.
Methods: We performed serial cerebrospinal fluid (CSF) metabolomic analyses using liquid chromatography-electrospray tandem mass spectrometry to evaluate changes in the tumor microenvironment in 14 patients with recurrent CNS lymphoma, focusing on 18 metabolites involved in neurotransmission and bioenergetics.
Anaplerotic odd-chain fatty acid supplementation has been suggested as an approach to replenish citric acid cycle intermediate (CACi) pools and facilitate adenosine triphosphate (ATP) production in subjects with long-chain fatty acid oxidation disorders, but the evidence that cellular CACi depletion exists and that repletion occurs following anaplerotic substrate supplementation is limited. We exercised very long-chain acyl-CoA dehydrogenase-deficient (VLCAD-/-) and wild-type (WT) mice to exhaustion and collected cardiac tissue for measurement of CACi by targeted metabolomics. In a second experimental group, VLCAD-/- and WT mice that had been fed chow prepared with either medium-chain triglyceride (MCT) oil or triheptanoin for 4 weeks were exercised for 60 minutes.
View Article and Find Full Text PDFObjectives: We sought to evaluate the relevance of pediatric dairy fat recommendations for children at risk for nonalcoholic fatty liver disease (NAFLD) by studying the association between dairy fat intake and the amount of liver fat. The effects of dairy fat may be mediated by odd chain fatty acids (OCFA), such as pentadecanoic acid (C15:0), and monomethyl branched chain fatty acids (BCFA), such as iso-heptadecanoic acid (iso-C17:0). Therefore, we also evaluated the association between plasma levels of OCFA and BCFA with the amount of liver fat.
View Article and Find Full Text PDFAlthough norm-referenced scores are essential to the identification of disability, they possess several features which affect their sensitivity to change. Norm-referenced scores often decrease over time among people with neurodevelopmental disorders who exhibit slower-than-average increases in ability. Further, the reliability of norm-referenced scores is lower at the tails of the distribution, resulting in floor effects and increased measurement error for people with neurodevelopmental disorders.
View Article and Find Full Text PDFThe incidence of type 2 diabetes is increasing more rapidly in adolescents than in any other age group. We identified and compared metabolite signatures in obese children with type 2 diabetes (T2D), obese children without diabetes (OB), and healthy, age- and gender-matched normal weight controls (NW) by measuring 273 analytes in fasting plasma and 24-hour urine samples from 90 subjects by targeted LC-MS/MS. Diabetic subjects were within 2 years of diagnosis in an attempt to capture early-stage disease prior to declining renal function.
View Article and Find Full Text PDFCBS deficient individuals undergoing betaine supplementation without sufficient dietary methionine restriction can develop severe hypermethioninemia and brain edema. Brain edema has also been observed in individuals with severe hypermethioninemia without concomitant betaine supplementation. We systematically evaluated reports from 11 published and 4 unpublished patients with CBS deficiency and from additional four cases of encephalopathy in association with elevated methionine.
View Article and Find Full Text PDFWe report that recessive inheritance of a post-GPI attachment to proteins 2 (PGAP2) gene variant results in the hyperphosphatasia with neurologic deficit (HPMRS) phenotype described by Mabry et al., in 1970. HPMRS, or Mabry syndrome, is now known to be one of 21 inherited glycosylphosphatidylinositol (GPI) deficiencies (IGDs), or GPI biosynthesis defects (GPIBDs).
View Article and Find Full Text PDFThe product of thiamine phosphokinase is the cofactor for many enzymes, including the dehydrogenases of pyruvate, 2-ketoglutarate and branched chain ketoacids. Its deficiency has recently been described in a small number of patients, some of whom had a Leigh syndrome phenotype. The patient who also had a Leigh phenotype was initially found to have a low concentration of biotin in plasma and massive urinary excretion of biotin.
View Article and Find Full Text PDFNeuronal migration defects, including pachygyria, are among the most severe developmental brain defects in humans. Here, we identify biallelic truncating mutations in CTNNA2, encoding αN-catenin, in patients with a distinct recessive form of pachygyria. CTNNA2 was expressed in human cerebral cortex, and its loss in neurons led to defects in neurite stability and migration.
View Article and Find Full Text PDFHomocystinuria is an inherited metabolic disorder most commonly caused by cystathionine β-synthase deficiency. Severe cases can cause white matter abnormalities that can mimic other vascular, toxic and metabolic disorders on computed tomography and magnetic resonance imaging. We present such a case which demonstrates not only extensive white matter abnormalities on magnetic resonance imaging, but also previously unreported basal ganglia signal abnormalities and imaging manifestations of increased intracranial pressure, likely caused by elevated methionine and betaine therapy.
View Article and Find Full Text PDFMetabolomics is one of the newer omics fields, and has enabled researchers to complement genomic and protein level analysis of disease with both semi-quantitative and quantitative metabolite levels, which are the chemical mediators that constitute a given phenotype. Over more than a decade, methodologies have advanced for both targeted (quantification of specific analytes) as well as untargeted metabolomics (biomarker discovery and global metabolite profiling). Untargeted metabolomics is especially useful when there is no a priori metabolic hypothesis.
View Article and Find Full Text PDFBackground: Late-onset Pompe disease is a rare genetic neuromuscular disorder caused by lysosomal acid alpha-glucosidase (GAA) deficiency that ultimately results in mobility loss and respiratory failure. Current enzyme replacement therapy with recombinant human (rh)GAA has demonstrated efficacy in subjects with late-onset Pompe disease. However, long-term effects of rhGAA on pulmonary function have not been observed, likely related to inefficient delivery of rhGAA to skeletal muscle lysosomes and associated deficits in the central nervous system.
View Article and Find Full Text PDFMany human skin diseases, such as seborrheic dermatitis, potentially occur due to the over-growth of fungi. It remains a challenge to develop fungicides with a lower risk of generating resistant fungi and non-specifically killing commensal microbes. Our probiotic approaches using a selective fermentation initiator of skin commensal bacteria, fermentation metabolites or their derivatives provide novel therapeutics to rein in the over-growth of fungi.
View Article and Find Full Text PDFHolocarboxylase synthetase (HLCS) deficiency is a rare autosomal recessive disorder that presents with multiple life-threatening metabolic derangements including metabolic acidosis, ketosis, and hyperammonemia. A majority of HLCS deficiency patients respond to biotin therapy; however, some patients show only a partial or no response to biotin therapy. Here, we report a neonatal presentation of HLCS deficiency with partial response to biotin therapy.
View Article and Find Full Text PDFNephropathic cystinosis is an autosomal recessive metabolic, lifelong disease characterized by lysosomal cystine accumulation throughout the body that commonly presents in infancy with a renal Fanconi syndrome and, if untreated, leads to end-stage kidney disease (ESKD) in the later childhood years. The molecular basis is due to mutations in CTNS, the gene encoding for the lysosomal cystine-proton cotransporter, cystinosin. During adolescence and adulthood, extrarenal manifestations of cystinosis develop and require multidisciplinary care.
View Article and Find Full Text PDFBackground: Cystine determination is a critical biochemical test for the diagnosis and therapeutic monitoring of the lysosomal storage disease cystinosis. The classical mixed-leukocyte cystine assay requires prompt specialized recovery/isolation following blood drawing, providing cystine concentrations normalized to total protein from assorted types of white blood cells, each with varying cystine content.
Methods: We present a new workflow for cystine determination using immunomagnetic granulocyte purification, and new reference ranges established from 47 patient and 27 obligate heterozygote samples assayed.
The acetyltransferase, E1a-binding protein (p300), is proposed to regulate various aspects of skeletal muscle development, metabolism, and mitochondrial function,viaits interaction with numerous transcriptional regulators and other proteins. Remarkably, however, the contribution of p300 to skeletal muscle function and metabolism,in vivo, is poorly understood. To address this, we used Cre-LoxP methodology to generate mice with skeletal muscle-specific knockout of E1a-binding protein (mKO).
View Article and Find Full Text PDFBackground: The hepatic urea cycle is the main metabolic pathway for detoxification of ammonia. Inborn errors of urea cycle function present with severe hyperammonemia and a high case fatality rate. Long-term prognosis depends on the residual activity of the defective enzyme.
View Article and Find Full Text PDFThe drug nitisinone (NTBC) is used to treat tyrosinemia type I, and more recently has been also used for the treatment of another disorder of tyrosine metabolism, alkaptonuria. While studying the dose effects of NTBC treatment on alkaptonuria, untargeted metabolomics revealed perturbations in a completely separate pathway, that of tryptophan metabolism. Significant elevations in several indolic compounds associated with the indolepyruvate pathway of tryptophan metabolism were present in NTBC-treated patient sera and correlated with elevations of an intermediate of tyrosine metabolism.
View Article and Find Full Text PDFAlkaptonuria is an autosomal recessive disease involving a deficiency of the enzyme homogentisate dioxygenase, which is involved in the tyrosine degradation pathway. The enzymatic deficiency results in high concentrations of homogentisic acid (HGA), which results in orthopedic and cardiac complications, among other symptoms. Nitisinone (NTBC) has been shown to effectively treat alkaptonuria by blocking the conversion of 4-hydroxyphenylpyruvate to HGA, but there have been concerns that using doses higher than about 2 mg/day could cause excessively high levels of tyrosine, resulting in crystal deposition and corneal pathology.
View Article and Find Full Text PDFMass spectrometry-based metabolomics is a rapidly growing field in both research and diagnosis. Generally, the methodologies and types of instruments used for clinical and other absolute quantification experiments are different from those used for biomarkers discovery and untargeted analysis, as the former requires optimal sensitivity and dynamic range, while the latter requires high resolution and high mass accuracy. We used a Q-TOF mass spectrometer with two different types of pentafluorophenyl (PFP) stationary phases, employing both positive and negative ionization, to develop and validate a hybrid quantification and discovery platform using LC-HRMS.
View Article and Find Full Text PDFPurpose: 3-Methylcrotonyl-CoA carboxylase deficiency (MCCD) is an autosomal recessive disorder of leucine catabolism that has a highly variable clinical phenotype, ranging from acute metabolic acidosis to nonspecific symptoms such as developmental delay, failure to thrive, hemiparesis, muscular hypotonia, and multiple sclerosis. Implementation of newborn screening for MCCD has resulted in broadening the range of phenotypic expression to include asymptomatic adults. The purpose of this study was to identify factors underlying the varying phenotypes of MCCD.
View Article and Find Full Text PDFVery long-chain acyl-CoA dehydrogenase deficiency (VLCADD) is a fatty acid oxidation disorder with widely varying presentations that has presented a significant challenge to newborn screening (NBS). The Western States Regional Genetics Services Collaborative developed a workgroup to study infants with NBS positive for VLCADD. We performed retrospective analysis of newborns with elevated C14:1-acylcarnitine on NBS in California, Oregon, Washington, and Hawai'i including available confirmatory testing and clinical information.
View Article and Find Full Text PDF