Publications by authors named "Brozek C"

Nanoparticles of metal-organic frameworks (nanoMOFs) possess the unusual combination of both internal and external surfaces. While internal surfaces have been the focus of fundamental and applications-based MOF studies, the chemistry of the external surfaces remains scarcely understood. Herein we report that specific ion interactions with nanoparticles of Cu(1,2,3-triazolate) (Cu(TA)) resemble the Hofmeister behavior of proteins and the supramolecular chemistry of synthetic macromolecules.

View Article and Find Full Text PDF

2D materials can be isolated as monolayer sheets when interlayer interactions involve weak van der Waals forces. These atomically thin structures enable novel topological physics and open chemical questions of how to tune the structure and properties of the sheets while maintaining them as isolated monolayers. Here, this work investigates 2D electroactive sheets that exfoliate in solution into colloidal nanosheets, but aggregate upon oxidation, giving rise to tunable interlayer charge transfer absorption and photoluminescence.

View Article and Find Full Text PDF

Size reduction offers a synthetic route to tunable phase change behavior. Preparing materials as nanoparticles causes drastic modulations to critical temperatures (), hysteresis widths, and the "sharpness" of first-order versus second-order phase transitions. A microscopic picture of the chemistry underlying this size dependence in phenomena ranging from melting to superconductivity remains debated.

View Article and Find Full Text PDF
Article Synopsis
  • Anion sensing technology is essential for understanding biological systems and environmental interactions, yet traditional electrochemical methods are limited in distinguishing various anions in mixtures.
  • This study introduces a novel approach using nanocrystalline films of the metal-organic framework (MOF) Cr(1,2,3-triazolate) to differentiate anions based on their size, which influences the reversible oxidation process of the MOF.
  • The research demonstrates the effectiveness of this method by creating a highly sensitive and recyclable electrochemical sensor for ClO in water that can detect concentrations as low as 100 nM, showcasing the potential of MOFs for advanced anion sensing applications.
View Article and Find Full Text PDF

Solvation shells strongly influence the interfacial chemistry of colloidal systems, from the activity of proteins to the colloidal stability and catalysis of nanoparticles. Despite their fundamental and practical importance, solvation shells have remained largely undetected by spectroscopy. Furthermore, their ability to assemble at complex but realistic interfaces with heterogeneous and rough surfaces remains an open question.

View Article and Find Full Text PDF

Metal-linker bonds serve as the "glue" that binds metal ions to multitopic organic ligands in the porous materials known as metal-organic frameworks (MOFs). Despite ample evidence of bond lability in molecular and polymeric coordination compounds, the metal-linker bonds of MOFs were long assumed to be rigid and static. Given the importance of ligand fields in determining the behaviour of metal species, labile bonding in MOFs would help explain outstanding questions about MOF behaviour, while providing a design tool for controlling dynamic and stimuli-responsive optoelectronic, magnetic, catalytic, and mechanical phenomena.

View Article and Find Full Text PDF

Tailoring the molecular components of hybrid organic-inorganic materials enables precise control over their electronic properties. Designing electrically conductive coordination materials, metal-organic frameworks (MOFs), has relied on single-metal nodes because the metal-oxo clusters present in the vast majority of MOFs are not suitable for electrical conduction due to their localized electron orbitals. Therefore, the development of metal-cluster nodes with delocalized bonding would greatly expand the structural and electrochemical tunability of conductive materials.

View Article and Find Full Text PDF

Although metal-organic framework (MOF) photocatalysts have become ubiquitous, basic aspects of their photoredox mechanisms remain elusive. Nanosizing MOFs enables solution-state techniques to probe size-dependent properties and molecular reactivity, but few MOFs have been prepared as nanoparticles (nanoMOFs) with sufficiently small sizes. Here, we report a rapid reflux-based synthesis of the photoredox-active MOF TiO(OH)(terephthalate) (MIL-125) to achieve diameters below 30 nm in less than 2 hours.

View Article and Find Full Text PDF

Redox intercalation involves coupled ion-electron motion within host materials, finding extensive application in energy storage, electrocatalysis, sensing, and optoelectronics. Monodisperse MOF nanocrystals, compared to their bulk phases, exhibit accelerated mass transport kinetics that promote redox intercalation inside nanoconfined pores. However, nanosizing MOFs significantly increases their external surface-to-volume ratios, making the intercalation redox chemistry into MOF nanocrystals difficult to understand due to the challenge of differentiating redox sites at the exterior of MOF particles from the internal nanoconfined pores.

View Article and Find Full Text PDF

Conventional semiconductor nanocrystals exhibit wide-ranging optical behavior, whereas the size-dependent photophysical properties of metal-organic framework (MOF) nanocrystals remain an open research frontier. Here, we present size- and temperature-dependent optical absorption spectra of common MOFs with particle sizes ranging from tens of nanometers to several micrometers. All materials exhibit optical gaps that decrease at elevated temperatures, which we attribute to the dynamic nature of MOF metal-linker bonds.

View Article and Find Full Text PDF

We report "flexibility constants"-a conceptual analog to metal-ligand stability constants-of UiO-66, the prototypical "stable" MOF, across a wide temperature range in both vacuum and in the presence of typical guest solvents. With these data, we extract key thermodynamic parameters governing the reversible bond equilibrium and demonstrate that guest molecules strongly favor the reversible dissociation of MOF metal-linker bonds.

View Article and Find Full Text PDF

Interactions between ions and itinerant charges govern electronic processes ranging from the redox chemistry of molecules to the conductivity of organic semiconductors, but remain an open frontier in the study of microporous materials. These interactions may strongly influence the electronic behavior of microporous materials that confine ions and charges to length scales comparable to proton-coupled electron transfer. Yet despite mounting evidence that both solvent and electrolyte influence charge transport through ion-charge interactions in metal-organic frameworks, fundamental microscopic insights are only just beginning to emerge.

View Article and Find Full Text PDF

The diverse optical, magnetic, and electronic behaviors of most colloidal semiconductor nanocrystals emerge from materials with limited structural and elemental compositions. Conductive metal-organic frameworks (MOFs) possess rich compositions with complex architectures but remain unexplored as nanocrystals, hindering their incorporation into scalable devices. Here, we report the controllable synthesis of conductive MOF nanoparticles based on Fe(1,2,3-triazolate).

View Article and Find Full Text PDF
Article Synopsis
  • Inclusion of an extra nitrogen atom in phosphorus-nitrogen heterocycles leads to surprising tautomerization into a nonaromatic form, which can be examined through X-ray crystallography and computational methods.
  • The addition of a fluorine atom helps resist this tautomerization, shedding light on the reasons behind the transformation.
  • Research on alkylated variants revealed that while these compounds remain aromatic in solution, they mainly adopt a quinoidal structure in solid form, offering insights for developing responsive hydrogen-bond-directed receptors.
View Article and Find Full Text PDF

Ti-containing metal-organic frameworks are known to accumulate electrons in their conduction bands, accompanied by protons, when irradiated in the presence of alcohols. The archetypal system, MIL-125, was recently shown to reach a limit of 2e per Ti octomeric node. However, the origin of this limit and the broader applicability of this unique chemistry relies not only on the presence of Ti, but also access to inorganic inner-sphere Lewis basic anions in the MOF nodes.

View Article and Find Full Text PDF

Degenerately doped metal-oxide nanocrystals (NCs) show localized surface plasmon resonances (LSPRs) that are tunable via their tunable excess charge-carrier densities. Modulation of excess charge carriers has also been used to control magnetism in colloidal doped metal-oxide NCs. The addition of excess delocalized conduction-band (CB) electrons can be achieved through aliovalent doping or by postsynthetic techniques such as electrochemistry or photodoping.

View Article and Find Full Text PDF

Titanium-based metal-organic frameworks (Ti-MOFs) have attracted intense research attention because they can store charges in the form of Ti and they serve as photosensitizers to cocatalysts through heterogeneous photoredox reactions at the MOF-liquid interface. Both the charge storage and charge transfer depend on the redox potentials of the MOF and the molecular substrate, but the factors controlling these energetic aspects are not well understood. Additionally, photocatalysis involving Ti-MOFs relies on cocatalysts rather than the intrinsic Ti reactivity, in part because Ti-MOFs with open metal sites are rare.

View Article and Find Full Text PDF

Nanoparticles of metal-organic frameworks (nanoMOFs) boast superior properties compared to their bulk analogs, yet little is known about how common synthetic parameters dictate particle sizes. Here, we provide experimental evidence for the "seesaw" model of nanoMOF growth. Solution acidity, ligand excess, and reactant concentrations are decoupled and shown to form the key independent determinants of nanoMOF sizes, thereby validating the proposal that nanoMOFs arise from coupled equilibria involving ligand deprotonation and metal-ligand complexation.

View Article and Find Full Text PDF
Article Synopsis
  • The design principles for metal-organic frameworks (MOFs) have driven advancements in fields like energy storage and catalysis, but these principles often assume that MOFs are structurally and compositionally rigid.
  • Recent findings show that MOFs can exhibit unexpected behaviors that challenge this idealization, highlighting the importance of considering chemical subtleties.
  • Understanding that deviations from ideal structures are common suggests a need to reevaluate existing design rules and recognize new relationships between structure and properties in MOFs.
View Article and Find Full Text PDF

Through comprehensive analysis of carboxylate-based metal-organic frameworks (MOFs), we present general evidence that challenges the common perception of MOF metal-linker bonds being static. Structural dynamics in MOFs, however, typically refers to the "breathing" behavior of cavities, where pores open and close in response to guest molecules, and to the transient binding of guest molecules, but dynamic bonding would explain important MOF phenomena in catalysis, postsynthetic exchange, negative thermal expansion, and crystal growth. Here, we demonstrate, through use of variable-temperature diffuse reflectance infrared Fourier transform spectroscopy (VT-DRIFTS) aided by ab initio plane wave density functional theory, that similar evidence for melting behavior in zeolitic imidazolate frameworks (ZIFs), i.

View Article and Find Full Text PDF

Porous molecular materials combine benefits such as convenient processability and the possibility for atom-precise structural fine-tuning which makes them remarkable candidates for specialty applications in the areas of gas separation, catalysis, and sensing. In order to realize the full potential of these materials and guide future molecular design, knowledge of the transition from molecular properties into materials behavior is essential. In this work, the class of compounds termed cycloparaphenylenes (CPPs)-shape-persistent macrocycles with built-in cavities and radially oriented π-systems-was selected as a conceptually simple class of intrinsically porous nanocarbons to serve as a platform for studying the transition from analyte sorption properties of small aggregates to those of bulk materials.

View Article and Find Full Text PDF

Porous nanocrystals of metal-organic frameworks (MOFs) offer greater bioavailability, higher surface-to-volume ratios, superior control over MOF membrane fabrication, and enhanced guest-sorption kinetics compared to analogous bulk phases, but reliable synthesis of uniformly sized particles remains an outstanding challenge. Here, we identify the smallest and most probable sizes of known MOF nanocrystals and present an exhaustive comparative summary of nano- bulk-MOF syntheses. Based on critical analysis of reported size data and experimental conditions, an alternate to the LaMer model is proposed that describes nanocrystal formation as a kinetic competition between acid-base and metal-ligand reactivity.

View Article and Find Full Text PDF

The scalable production of homogeneous, uniform carbon nanomaterials represents a key synthetic challenge for contemporary organic synthesis as nearly all current fabrication methods provide heterogeneous mixtures of various carbonized products. For carbon nanotubes (CNTs) in particular, the inability to access structures with specific diameters or chiralities severely limits their potential applications. Here, we present a general approach to access solid-state CNT mimic structures via the self-assembly of fluorinated nanohoops, which can be synthesized in a scalable, size-selective fashion.

View Article and Find Full Text PDF

We present a spectroscopic study of colloidal PbSe quantum dots (QDs) that have been photodoped to introduce excess delocalized conduction-band (CB) electrons. High-quality absorption spectra are obtained for these degenerately doped QDs with excess electron concentrations up to ∼10 cm. At the highest doping levels, electrons have completely filled the 1S orbitals of the CB and partially populated the higher-energy 1P orbitals.

View Article and Find Full Text PDF

Colloidal ZnO semiconductor nanocrystals have previously been shown to accumulate multiple delocalized conduction-band electrons under chemical, electrochemical, or photochemical reducing conditions, leading to emergent semimetallic characteristics such as quantum plasmon resonances and raising prospects for application in multielectron redox transformations. Here, we demonstrate a dramatic enhancement in the capacitance of colloidal ZnO nanocrystals through aliovalent Fe-doping. Very high areal and volumetric capacitances (33 μF cm, 233 F cm) are achieved in ZnFeO nanocrystals that rival those of the best supercapacitors used in commercial energy-storage devices.

View Article and Find Full Text PDF