Publications by authors named "Broxmeyer H"

Cord blood (CB) has been proven to be an alternative source of haematopoietic stem cells (HSCs) for clinical transplantation and has multiple advantages, including but not limited to greater HLA compatibility, lower incidence of graft-versus-host disease (GvHD), higher survival rates and lower relapse rates among patients with minimal residual disease. However, the limited number of HSCs in a single CB unit limits the wider use of CB in clinical treatment. Many efforts have been made to enhance the efficacy of CB HSC transplantation, particularly by ex vivo expansion or enhancing the homing efficiency of HSCs.

View Article and Find Full Text PDF

Umbilical cord blood transplantation is a life-saving treatment for malignant and non-malignant hematologic disorders. It remains unclear how long cryopreserved units remain functional, and the length of cryopreservation is often used as a criterion to exclude older units. We demonstrate that long-term cryopreserved cord blood retains similar numbers of hematopoietic stem and progenitor cells compared with fresh and recently cryopreserved cord blood units.

View Article and Find Full Text PDF

Multiple myeloma (MM) is an incurable malignancy of plasma cells. To identify targets for MM immunotherapy, we develop an integrated pipeline based on mass spectrometry analysis of seven MM cell lines and RNA sequencing (RNA-seq) from 900+ patients. Starting from 4,000+ candidates, we identify the most highly expressed cell surface proteins.

View Article and Find Full Text PDF

Lipid droplets (LDs) are cellular organelles critical for lipid homeostasis, with intramyocyte LD accumulation implicated in metabolic disorder-associated heart diseases. Here we identify a human long non-coding RNA, Lipid-Droplet Transporter (LIPTER), essential for LD transport in human cardiomyocytes. LIPTER binds phosphatidic acid and phosphatidylinositol 4-phosphate on LD surface membranes and the MYH10 protein, connecting LDs to the MYH10-ACTIN cytoskeleton and facilitating LD transport.

View Article and Find Full Text PDF

Enhancing the efficiency of hematopoietic stem cell (HSC) homing and engraftment is critical for cord blood (CB) hematopoietic cell transplantation (HCT). Recent studies indicate that N-methyladenosine (mA) modulates the expression of mRNAs that are critical for stem cell function by influencing their stability. Here, we demonstrate that inhibition of RNA decay by regulation of RNA methylation, enhances the expression of the homing receptor chemokine C-X-C receptor-4 (CXCR4) in HSCs.

View Article and Find Full Text PDF

Experimental hematopoietic stem cell transplantation (HSCT) is an invaluable tool in determining the function and characteristics of hematopoietic stem cells (HSC) from experimental mouse and human donor groups. These groups could include, but are not limited to, genetically altered populations (gene knockout/knockin models), ex vivo manipulated cell populations, or in vivo modulated cell populations. The basic fundamentals of this process involve taking cells from a mouse/human donor source and putting them into another mouse (recipient) after preconditioning of the recipient with either total body irradiation (TBI) for mouse donor cells or into sublethally irradiated immune-deficient mice for human donor cells.

View Article and Find Full Text PDF

Neutrophils, the most abundant white blood cells in circulation, are closely related to cancer development and progression. Healthy primary neutrophils present potent cytotoxicity against various cancer cell lines through direct contact and via generation of reactive oxygen species. However, due to their short half-life and resistance to genetic modification, neutrophils have not yet been engineered with chimeric antigen receptors (CARs) to enhance their antitumor cytotoxicity for targeted immunotherapy.

View Article and Find Full Text PDF

Hematopoietic stem cells (HSCs) manifest impaired recovery and self-renewal with a concomitant increase in differentiation when exposed to ambient air as opposed to physioxia. Mechanism(s) behind this distinction are poorly understood but have the potential to improve stem cell transplantation. Single-cell RNA sequencing of HSCs in physioxia revealed upregulation of HSC self-renewal genes and downregulation of genes involved in inflammatory pathways and HSC differentiation.

View Article and Find Full Text PDF

Aryl hydrocarbon receptor (AhR) antagonism is known to expand human hematopoietic stem cells (HSCs). However, its regulatory effect on the lineage-skewed differentiation of HSCs has not been sufficiently studied. Here, we investigate the effect of the AhR-selective antagonist CH223191 on the regulation of HSC differentiation.

View Article and Find Full Text PDF

Human hematopoietic stem cells (HSCs), which arise from aorta-gonad-mesonephros (AGM), are widely used to treat blood diseases and cancers. However, a technique for their robust generation in vitro is still missing. Here we show temporal manipulation of Wnt signaling is sufficient and essential to induce AGM-like hematopoiesis from human pluripotent stem cells.

View Article and Find Full Text PDF

Hematopoietic cells are regulated in part by extracellular cues from cytokines. Leukemia inhibitory factor (LIF) promotes survival, self-renewal, and pluripotency of mouse embryonic stem cells (mESC). While genetic deletion of LIF affects hematopoietic progenitor cells (HPCs), the direct effect of LIF protein exposure on HPC survival is not known.

View Article and Find Full Text PDF

Little is known about a regulatory role of CaMKK2 for hematopoietic stem (HSC) and progenitor (HPC) cell function. To assess this, we used Camkk2-/- and wild type (WT) control mouse bone marrow (BM) cells. BM cells were collected/processed and compared under hypoxia (3% oxygen; physioxia) vs.

View Article and Find Full Text PDF

Preclinical studies of primary cancer cells are typically done after tumors are removed from patients or animals at ambient atmospheric oxygen (O, ~21%). However, O concentrations in organs are in the ~3 to 10% range, with most tumors in a hypoxic or 1 to 2% O environment in vivo. Although effects of O tension on tumor cell characteristics in vitro have been studied, these studies are done only after tumors are first collected and processed in ambient air.

View Article and Find Full Text PDF

Fanconi anemia (FA) is a disease of genomic instability and cancer. In addition to DNA damage repair, FA pathway proteins are now known to be critical for maintaining faithful chromosome segregation during mitosis. While impaired DNA damage repair has been studied extensively in FA-associated carcinogenesis , the oncogenic contribution of mitotic abnormalities secondary to FA pathway deficiency remains incompletely understood.

View Article and Find Full Text PDF

Little is known of hematopoietic stem (HSC) and progenitor (HPC) cell self-renewal. The role of Brahma (BRM), a chromatin remodeler, in HSC function is unknown. Bone marrow (BM) from Brm mice manifested increased numbers of long- and short-term HSCs, GMPs, and increased numbers and cycling of functional HPCs.

View Article and Find Full Text PDF

Polycomb group protein Bmi1 is essential for hematopoietic stem cell (HSC) self-renewal and terminal differentiation. However, its target genes in hematopoietic stem and progenitor cells are largely unknown. We performed gene expression profiling assays and found that genes of the Wnt signaling pathway are significantly elevated in Bmi1 null hematopoietic stem and progenitor cells (HSPCs).

View Article and Find Full Text PDF

Cytokines/chemokines regulate hematopoiesis, most having multiple cell actions. Numerous but not all chemokine family members act as negative regulators of hematopoietic progenitor cell (HPC) proliferation, but very little is known about such effects of the chemokine, CXCL15/Lungkine. We found that CXCL15/Lungkine-/- mice have greatly increased cycling of multi cytokine-stimulated bone marrow and spleen hematopoietic progenitor cells (HPCs: CFU-GM, BFU-E, and CFU-GEMM) and CXCL15 is expressed in many bone marrow progenitor and other cell types.

View Article and Find Full Text PDF

The heterogeneity of human hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) under stress conditions such as ex vivo expansion is poorly understood. Here, we report that the frequencies of SCID-repopulating cells were greatly decreased in cord blood (CB) CD34+ HSCs and HPCs upon ex vivo culturing. Transcriptomic analysis and metabolic profiling demonstrated that mitochondrial oxidative stress of human CB HSCs and HPCs notably increased, along with loss of stemness.

View Article and Find Full Text PDF

Phosphofructokinase 1 (PFK1) is expressed in T cell acute lymphoblastic leukemia (T-ALL), where its upregulation is linked with cancer progression. While PFK1 functions in the glycolysis pathway within the cytoplasm, it is also present in the nucleus where it regulates gene transcription. In this issue of the JCI, Xueliang Gao, Shenghui Qin, et al.

View Article and Find Full Text PDF

We wish to suggest the possibility there is a link between the brain and hematopoiesis in the bone marrow and that in the future it may be possible to use such information for better understanding of the regulation of hematopoiesis, and for efficacious treatment of hematopoietic disorders.

View Article and Find Full Text PDF

Chemokines are small proteins that promote leukocyte migration during development, infection, and inflammation. We and others isolated the unique chemokine CCL21, a potent chemo-attractant for naïve T-cells, naïve B-cells, and immature dendritic cells. CCL21 has a 37 amino acid carboxy terminal extension that is distinct from the rest of the chemokine family, which is thought to anchor it to venule endothelium where the amino terminus can interact with its cognate receptor, CCR7.

View Article and Find Full Text PDF

Radiation-induced bystander effects (RIBEs) is a neglected, but crucial, area of radiation response. In this issued of , Hu et al have provided important new information and mechanistic insights into RIBE-impairment of hematopoietic stem (HSC) and progenitor (HPC) cells in hematopoietic cell transplantation (HCT), with implications for the mitigation of RIBEs.

View Article and Find Full Text PDF

Gamma interferon inducible lysosomal thiol reductase (GILT), is known to be involved in immunity, but its role in hematopoiesis has not been previously reported. Herein, we demonstrate using gilt knockout (-/-) mice that loss of gilt associates with decreased numbers and cycling status of femoral hematopoietic progenitor cells (CFU-GM, BFU-E, and CFU-GEMM) with more modest effects on splenic progenitor cells. Thus, GILT is associated with positive regulation of hematopoietic progenitor cells in mice, mainly in bone marrow.

View Article and Find Full Text PDF