Integrating genomic, hyperspectral imaging (HSI), and environmental data enhances wheat yield predictions, with HSI providing detailed spectral insights for predicting complex grain yield (GY) traits. Incorporating HSI data with single nucleotide polymorphic markers (SNPs) resulted in a substantial improvement in predictive ability compared to the conventional genomic prediction models. Over the course of several years, the prediction ability varied due to diverse weather conditions.
View Article and Find Full Text PDFEnhancing predictive modeling accuracy in wheat (Triticum aestivum) breeding through the integration of high-throughput phenotyping (HTP) data with genomic information is crucial for maximizing genetic gain. In this study, spanning four locations in the southeastern United States over 3 years, models to predict grain yield (GY) were investigated through different cross-validation approaches. The results demonstrate the superiority of multivariate comprehensive models that incorporate both genomic and HTP data, particularly in accurately predicting GY across diverse locations and years.
View Article and Find Full Text PDFSweetpotato, Ipomoea batatas (L.) Lam. (2n = 6x = 90), is among the world's most important food crops and is North Carolina's most important vegetable crop.
View Article and Find Full Text PDFThe Puccinia graminis f. sp. tritici (Pgt) Ug99-emerging virulent races present a major challenge to global wheat production.
View Article and Find Full Text PDFHigh-throughput genotyping arrays have provided a cost-effective, reliable and interoperable system for genotyping hexaploid wheat and its relatives. Existing, highly cited arrays including our 35K Wheat Breeder's array and the Illumina 90K array were designed based on a limited amount of varietal sequence diversity and with imperfect knowledge of SNP positions. Recent progress in wheat sequencing has given us access to a vast pool of SNP diversity, whilst technological improvements have allowed us to fit significantly more probes onto a 384-well format Axiom array than previously possible.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2023
Wheat is an important contributor to global food security, and further improvements are required to feed a growing human population. Functional genetics and genomics tools can help us to understand the function of different genes and to engineer beneficial changes. In this study, we used a promoter capture assay to sequence 2-kb regions upstream of all high-confidence annotated genes from 1,513 mutagenized plants from the tetraploid wheat variety Kronos.
View Article and Find Full Text PDFThe presence or absence of awns-whether wheat heads are 'bearded' or 'smooth' - is the most visible phenotype distinguishing wheat cultivars. Previous studies suggest that awns may improve yields in heat or water-stressed environments, but the exact contribution of awns to yield differences remains unclear. Here we leverage historical phenotypic, genotypic, and climate data for wheat (Triticum aestivum) to estimate the yield effects of awns under different environmental conditions over a 12-year period in the southeastern USA.
View Article and Find Full Text PDFFusarium head blight (FHB) is an economically and environmentally concerning disease of wheat (Triticum aestivum L). A two-pronged approach of marker-assisted selection coupled with genomic selection has been suggested when breeding for FHB resistance. A historical dataset comprised of entries in the Southern Uniform Winter Wheat Scab Nursery (SUWWSN) from 2011 to 2021 was partitioned and used in genomic prediction.
View Article and Find Full Text PDFHere, we provide an updated set of guidelines for naming genes in wheat that has been endorsed by the wheat research community. The last decade has seen a proliferation in genomic resources for wheat, including reference- and pan-genome assemblies with gene annotations, which provide new opportunities to detect, characterise, and describe genes that influence traits of interest. The expansion of genetic information has supported growth of the wheat research community and catalysed strong interest in the genes that control agronomically important traits, such as yield, pathogen resistance, grain quality, and abiotic stress tolerance.
View Article and Find Full Text PDFWheat heading time is genetically controlled by phenology genes including vernalization (), photoperiod () and earliness () genes. Characterization of the existing genetic variation in the phenology genes of wheat would provide breeding programs with valuable genetic resources necessary for the development of wheat varieties well-adapted to the local environment and early-maturing traits suitable for double-cropping system. One hundred forty-nine eastern U.
View Article and Find Full Text PDFWith the rapid generation and preservation of both genomic and phenotypic information for many genotypes within crops and across locations, emerging breeding programs have a valuable opportunity to leverage these resources to 1) establish the most appropriate genetic foundation at program inception and 2) implement robust genomic prediction platforms that can effectively select future breeding lines. Integrating genomics-enabled breeding into cultivar development can save costs and allow resources to be reallocated towards advanced (i.e.
View Article and Find Full Text PDFStem rust caused by the fungus Puccinia graminis f.sp. tritici Eriks.
View Article and Find Full Text PDFMarker-assisted selection is important for cultivar development. We propose a system where a training population genotyped for QTL and genome-wide markers may predict QTL haplotypes in early development germplasm. Breeders screen germplasm with molecular markers to identify and select individuals that have desirable haplotypes.
View Article and Find Full Text PDFIn humid and temperate areas, Septoria nodorum blotch (SNB) is a major fungal disease of common wheat (Triticum aestivum L.) in which grain yield is reduced when the pathogen, Parastagonospora nodorum, infects leaves and glumes during grain filling. Foliar SNB susceptibility may be associated with sensitivity to P.
View Article and Find Full Text PDFWheat (Triticum aestivum) yield is impacted by a diversity of developmental processes which interact with the environment during plant growth. This complex genetic architecture complicates identifying quantitative trait loci that can be used to improve yield. Trait data collected on individual processes or components of yield have simpler genetic bases and can be used to model how quantitative trait loci generate yield variation.
View Article and Find Full Text PDFAllopolyploidy greatly expands the range of possible regulatory interactions among functionally redundant homoeologous genes. However, connection between the emerging regulatory complexity and expression and phenotypic diversity in polyploid crops remains elusive. Here, we use diverse wheat accessions to map expression quantitative trait loci (eQTL) and evaluate their effects on the population-scale variation in homoeolog expression dosage.
View Article and Find Full Text PDFMulti-trait genomic prediction (MTGP) can improve selection accuracy for economically valuable 'primary' traits by incorporating data on correlated secondary traits. Resistance to Fusarium head blight (FHB), a fungal disease of wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.
View Article and Find Full Text PDFWe discovered a natural FT-A2 allele that increases grain number per spike in both pasta and bread wheat with limited effect on heading time. Increases in wheat grain yield are necessary to meet future global food demands. A previous study showed that loss-of-function mutations in FLOWERING LOCUS T2 (FT2) increase spikelet number per spike (SNS), an important grain yield component.
View Article and Find Full Text PDFTo improve the efficiency of high-density genotype data storage and imputation in bread wheat (Triticum aestivum L.), we applied the Practical Haplotype Graph (PHG) tool. The Wheat PHG database was built using whole-exome capture sequencing data from a diverse set of 65 wheat accessions.
View Article and Find Full Text PDFMany studies have evaluated the effectiveness of genomic selection (GS) using cross-validation within training populations; however, few have looked at its performance for forward prediction within a breeding program. The objectives for this study were to compare the performance of naïve GS (NGS) models without covariates and multi-trait GS (MTGS) models by predicting two years of F advanced breeding lines for three Fusarium head blight (FHB) resistance traits, deoxynivalenol (DON) accumulation, Fusarium damaged kernels (FDK), and severity (SEV) in soft red winter wheat and comparing predictions with phenotypic performance over two years of selection based on selection accuracy and response to selection. On average, for DON, the NGS model correctly selected 69.
View Article and Find Full Text PDFHessian fly resistance has centralized around resistance loci that are biotype specific. We show that field resistance is evident and controlled by a single locus on chromosome 7D. Hessian flies (Mayetiola destructor Say) infest and feed upon wheat (Triticum aestivum L) resulting in significant yield loss.
View Article and Find Full Text PDF