Publications by authors named "Brown-Borg H"

Colon cancer affects people of all ages. However, its frequency, as well as the related morbidity and mortality, are high among older adults. The complex physiological changes in the aging gut substantially limit the development of cancer therapies.

View Article and Find Full Text PDF

Brain aging is a major risk factor for cognitive diseases such as Alzheimer's disease (AD) and vascular dementia. The rate of aging and age-related pathology are modulated by stress responses and repair pathways that gradually decline with age. However, recent reports indicate that exceptional longevity sustains and may even enhance the stress response.

View Article and Find Full Text PDF

Frailty in aging is driven by the dysregulation of multiple biological pathways. Protectin DX (PDX) is a docosahexaenoic acid (DHA)-derived molecule that alleviates many chronic inflammatory disorders, but its potential effects on frailty remain unknown. Our goal is to identify age-related impairments in metabolic systems and to evaluate the therapeutic potential of PDX on frailty, physical performance, and health parameters.

View Article and Find Full Text PDF

Senescence is a cellular response characterized by cells irreversibly stopping dividing and entering a state of permanent growth arrest. One of the underlying pathophysiological causes of senescence is the oxidative stress-induced damage, indicating that eliminating the reactive oxygen and nitrogen species (RONS) may be beneficial to prevent and/or alleviate senescence. Herein, we developed ultra-small polydopamine nanoparticles (UPDA NPs) with superoxide dismutase (SOD)/catalase (CAT) enzyme-mimic activities, featuring broad-spectrum RONS-scavenging capability for inducing cytoprotective effects against RONS-mediated damage.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common form of dementia, affecting approximately 6.5 million Americans age 65 or older. AD is characterized by increased cognitive impairment and treatment options available provide minimal disease attenuation.

View Article and Find Full Text PDF

Frailty is a complex syndrome affecting a growing sector of the global population as medical developments have advanced human mortality rates across the world. Our current understanding of frailty is derived from studies conducted in the laboratory as well as the clinic, which have generated largely phenotypic information. Far fewer studies have uncovered biological underpinnings driving the onset and progression of frailty, but the stage is set to advance the field with preclinical and clinical assessment tools, multiomics approaches together with physiological and biochemical methodologies.

View Article and Find Full Text PDF

Cellular senescence is a terminal cell fate characterized by growth arrest and a metabolically active state characterized by high glycolytic activity. Human fibroblasts were placed in a unique metabolic state using a combination of methionine restriction (MetR) and rapamycin (Rapa). This combination induced a metabolic reprogramming that prevented the glycolytic shift associated with senescence.

View Article and Find Full Text PDF

The infusion of coronavirus disease 2019 (COVID-19) patients with mesenchymal stem cells (MSCs) potentially improves clinical symptoms, but the underlying mechanism remains unclear. We conducted a randomized, single-blind, placebo-controlled (29 patients/group) phase II clinical trial to validate previous findings and explore the potential mechanisms. Patients treated with umbilical cord-derived MSCs exhibited a shorter hospital stay (P = 0.

View Article and Find Full Text PDF

Cadmium (Cd) accumulates with aging and is elevated in long-lived species. Metallothioneins (MTs), small cysteine-rich proteins involved in metal homeostasis and Cd detoxification, are known to be related to longevity. However, the relationship between Cd accumulation, the role of MTs, and aging is currently unclear.

View Article and Find Full Text PDF

How the heat shock axis, repair pathways, and proteostasis impact the rate of aging is not fully understood. Recent reports indicate that normal aging leads to a 50% change in several regulatory elements of the heat shock axis. Most notably is the age-dependent enhancement of inhibitory signals associated with accumulated heat shock proteins and hyper-acetylation associated with marked attenuation of heat shock factor 1 (HSF1)-DNA binding activity.

View Article and Find Full Text PDF

The aging process causes many changes to the brain and is a major risk factor for the development of neurodegenerative diseases such as Alzheimer's Disease (AD). Despite an already vast amount of research on AD, a greater understanding of the disease's pathology and therapeutic options are desperately needed. One important distinction that is also in need of further study is the ability to distinguish changes to the brain observed in early stages of AD vs.

View Article and Find Full Text PDF

A summary of the Fourteenth International Symposium on the Neurobiology and Neuroendocrinology of Aging that was held July 15-20, 2018 in Bregenz, Austria, is presented. Seventeen of the speakers that presented at the conference submitted papers relevant to the topic of their presentation as well as overviews of their respective fields and are included in this special issue. The abstracts from each poster presentation as well as the speaker abstracts are also included at the end of the preface to the special issue.

View Article and Find Full Text PDF

Background: The 6-minute walking distance (6MWD) is an excellent measure of both functional endurance and health. The primary aim of this study was to estimate temporal trends in 6MWD for older Japanese adults between 1998 and 2017; the secondary aim was to estimate concurrent trends in body size (i.e.

View Article and Find Full Text PDF

Pedomorphy, maintenance of juvenile traits throughout life, is most pronounced in extraordinarily long-lived naked mole-rats. Many of these traits (e.g.

View Article and Find Full Text PDF

An age-associated increase in chronic, low-grade sterile inflammation termed "inflammaging" is a characteristic feature of mammalian aging that shows a strong association with occurrence of various age-associated diseases. However, the mechanism(s) responsible for inflammaging and its causal role in aging and age-related diseases are not well understood. Age-associated accumulation of damage-associated molecular patterns (DAMPs) is an important trigger in inflammation and has been proposed as a potential driver of inflammaging.

View Article and Find Full Text PDF

Age-dependent perturbation of the cellular stress response affects proteostasis and other key functions relevant to cellular action and survival. Central to age-related changes in the stress response is loss of heat shock factor 1 (HSF1)-DNA binding and transactivation properties. This report elucidates how age alters different checkpoints of HSF1 activation related to posttranslational modification and protein interactions.

View Article and Find Full Text PDF

Extension of mammalian health and life span has been achieved using various dietary interventions. We previously reported that restricting dietary methionine (MET) content extends life span only when growth hormone signaling is intact (no life span increase in GH deficiency or GH resistance). To understand the metabolic responses of altered dietary MET in the context of accelerated aging (high GH), the current study evaluated MET and related pathways in short-living GH transgenic (GH Tg) and wild-type mice following 8 weeks of restricted (0.

View Article and Find Full Text PDF

Dietary interventions are simple, non-invasive tools that can be utilized to improve health and lifespan. In this issue, Roberts et al. (2017) and Newman et al.

View Article and Find Full Text PDF

Background: Global but predictable changes impact the DNA methylome as we age, acting as a type of molecular clock. This clock can be hastened by conditions that decrease lifespan, raising the question of whether it can also be slowed, for example, by conditions that increase lifespan. Mice are particularly appealing organisms for studies of mammalian aging; however, epigenetic clocks have thus far been formulated only in humans.

View Article and Find Full Text PDF